ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelopabaf Unicode version

Theorem opelopabaf 4028
Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopab 4026 uses bound-variable hypotheses in place of distinct variable conditions." (Contributed by Mario Carneiro, 19-Dec-2013.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
Hypotheses
Ref Expression
opelopabaf.x  |-  F/ x ps
opelopabaf.y  |-  F/ y ps
opelopabaf.1  |-  A  e. 
_V
opelopabaf.2  |-  B  e. 
_V
opelopabaf.3  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
opelopabaf  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ph }  <->  ps )
Distinct variable groups:    x, y, A   
x, B, y
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem opelopabaf
StepHypRef Expression
1 opelopabsb 4015 . 2  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ph }  <->  [. A  /  x ]. [. B  / 
y ]. ph )
2 opelopabaf.1 . . 3  |-  A  e. 
_V
3 opelopabaf.2 . . 3  |-  B  e. 
_V
4 opelopabaf.x . . . 4  |-  F/ x ps
5 opelopabaf.y . . . 4  |-  F/ y ps
6 nfv 1461 . . . 4  |-  F/ x  B  e.  _V
7 opelopabaf.3 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
84, 5, 6, 7sbc2iegf 2884 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( [. A  /  x ]. [. B  / 
y ]. ph  <->  ps )
)
92, 3, 8mp2an 416 . 2  |-  ( [. A  /  x ]. [. B  /  y ]. ph  <->  ps )
101, 9bitri 182 1  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ph }  <->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284   F/wnf 1389    e. wcel 1433   _Vcvv 2601   [.wsbc 2815   <.cop 3401   {copab 3838
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-opab 3840
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator