| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opnzi | Unicode version | ||
| Description: An ordered pair is nonempty if the arguments are sets (it is also inhabited; see opm 3989). (Contributed by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opth1.1 |
|
| opth1.2 |
|
| Ref | Expression |
|---|---|
| opnzi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opth1.1 |
. . 3
| |
| 2 | opth1.2 |
. . 3
| |
| 3 | opm 3989 |
. . 3
| |
| 4 | 1, 2, 3 | mpbir2an 883 |
. 2
|
| 5 | n0r 3261 |
. 2
| |
| 6 | 4, 5 | ax-mp 7 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 |
| This theorem is referenced by: 0nelxp 4390 0neqopab 5570 |
| Copyright terms: Public domain | W3C validator |