![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opnzi | GIF version |
Description: An ordered pair is nonempty if the arguments are sets (it is also inhabited; see opm 3989). (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opth1.1 | ⊢ 𝐴 ∈ V |
opth1.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opnzi | ⊢ 〈𝐴, 𝐵〉 ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opth1.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | opth1.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | opm 3989 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 〈𝐴, 𝐵〉 ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
4 | 1, 2, 3 | mpbir2an 883 | . 2 ⊢ ∃𝑥 𝑥 ∈ 〈𝐴, 𝐵〉 |
5 | n0r 3261 | . 2 ⊢ (∃𝑥 𝑥 ∈ 〈𝐴, 𝐵〉 → 〈𝐴, 𝐵〉 ≠ ∅) | |
6 | 4, 5 | ax-mp 7 | 1 ⊢ 〈𝐴, 𝐵〉 ≠ ∅ |
Colors of variables: wff set class |
Syntax hints: ∃wex 1421 ∈ wcel 1433 ≠ wne 2245 Vcvv 2601 ∅c0 3251 〈cop 3401 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 |
This theorem is referenced by: 0nelxp 4390 0neqopab 5570 |
Copyright terms: Public domain | W3C validator |