ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordsson Unicode version

Theorem ordsson 4236
Description: Any ordinal class is a subclass of the class of ordinal numbers. Corollary 7.15 of [TakeutiZaring] p. 38. (Contributed by NM, 18-May-1994.)
Assertion
Ref Expression
ordsson  |-  ( Ord 
A  ->  A  C_  On )

Proof of Theorem ordsson
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ordelon 4138 . . 3  |-  ( ( Ord  A  /\  x  e.  A )  ->  x  e.  On )
21ex 113 . 2  |-  ( Ord 
A  ->  ( x  e.  A  ->  x  e.  On ) )
32ssrdv 3005 1  |-  ( Ord 
A  ->  A  C_  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1433    C_ wss 2973   Ord word 4117   Oncon0 4118
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-in 2979  df-ss 2986  df-uni 3602  df-tr 3876  df-iord 4121  df-on 4123
This theorem is referenced by:  onss  4237  orduni  4239  iordsmo  5935  tfrlemi14d  5970  ordiso2  6446
  Copyright terms: Public domain W3C validator