ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemi14d Unicode version

Theorem tfrlemi14d 5970
Description: The domain of recs is all ordinals (lemma for transfinite recursion). (Contributed by Jim Kingdon, 9-Jul-2019.)
Hypotheses
Ref Expression
tfrlemi14d.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
tfrlemi14d.2  |-  ( ph  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
Assertion
Ref Expression
tfrlemi14d  |-  ( ph  ->  dom recs ( F )  =  On )
Distinct variable groups:    x, f, y, A    f, F, x, y    ph, f, y
Allowed substitution hint:    ph( x)

Proof of Theorem tfrlemi14d
Dummy variables  g  h  u  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlemi14d.1 . . . 4  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
21tfrlem8 5957 . . 3  |-  Ord  dom recs ( F )
3 ordsson 4236 . . 3  |-  ( Ord 
dom recs ( F )  ->  dom recs ( F )  C_  On )
42, 3mp1i 10 . 2  |-  ( ph  ->  dom recs ( F ) 
C_  On )
5 tfrlemi14d.2 . . . . . . . 8  |-  ( ph  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
61, 5tfrlemi1 5969 . . . . . . 7  |-  ( (
ph  /\  z  e.  On )  ->  E. g
( g  Fn  z  /\  A. u  e.  z  ( g `  u
)  =  ( F `
 ( g  |`  u ) ) ) )
75ad2antrr 471 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  On )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u
) ) ) )  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
8 simplr 496 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  On )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u
) ) ) )  ->  z  e.  On )
9 simprl 497 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  On )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u
) ) ) )  ->  g  Fn  z
)
10 fneq2 5008 . . . . . . . . . . . . 13  |-  ( w  =  z  ->  (
g  Fn  w  <->  g  Fn  z ) )
11 raleq 2549 . . . . . . . . . . . . 13  |-  ( w  =  z  ->  ( A. u  e.  w  ( g `  u
)  =  ( F `
 ( g  |`  u ) )  <->  A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u ) ) ) )
1210, 11anbi12d 456 . . . . . . . . . . . 12  |-  ( w  =  z  ->  (
( g  Fn  w  /\  A. u  e.  w  ( g `  u
)  =  ( F `
 ( g  |`  u ) ) )  <-> 
( g  Fn  z  /\  A. u  e.  z  ( g `  u
)  =  ( F `
 ( g  |`  u ) ) ) ) )
1312rspcev 2701 . . . . . . . . . . 11  |-  ( ( z  e.  On  /\  ( g  Fn  z  /\  A. u  e.  z  ( g `  u
)  =  ( F `
 ( g  |`  u ) ) ) )  ->  E. w  e.  On  ( g  Fn  w  /\  A. u  e.  w  ( g `  u )  =  ( F `  ( g  |`  u ) ) ) )
1413adantll 459 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  On )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u
) ) ) )  ->  E. w  e.  On  ( g  Fn  w  /\  A. u  e.  w  ( g `  u
)  =  ( F `
 ( g  |`  u ) ) ) )
15 vex 2604 . . . . . . . . . . 11  |-  g  e. 
_V
161, 15tfrlem3a 5948 . . . . . . . . . 10  |-  ( g  e.  A  <->  E. w  e.  On  ( g  Fn  w  /\  A. u  e.  w  ( g `  u )  =  ( F `  ( g  |`  u ) ) ) )
1714, 16sylibr 132 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  On )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u
) ) ) )  ->  g  e.  A
)
181, 7, 8, 9, 17tfrlemisucaccv 5962 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  On )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u
) ) ) )  ->  ( g  u. 
{ <. z ,  ( F `  g )
>. } )  e.  A
)
19 vex 2604 . . . . . . . . . . . 12  |-  z  e. 
_V
205tfrlem3-2d 5951 . . . . . . . . . . . . 13  |-  ( ph  ->  ( Fun  F  /\  ( F `  g )  e.  _V ) )
2120simprd 112 . . . . . . . . . . . 12  |-  ( ph  ->  ( F `  g
)  e.  _V )
22 opexg 3983 . . . . . . . . . . . 12  |-  ( ( z  e.  _V  /\  ( F `  g )  e.  _V )  ->  <. z ,  ( F `
 g ) >.  e.  _V )
2319, 21, 22sylancr 405 . . . . . . . . . . 11  |-  ( ph  -> 
<. z ,  ( F `
 g ) >.  e.  _V )
24 snidg 3423 . . . . . . . . . . 11  |-  ( <.
z ,  ( F `
 g ) >.  e.  _V  ->  <. z ,  ( F `  g
) >.  e.  { <. z ,  ( F `  g ) >. } )
25 elun2 3140 . . . . . . . . . . 11  |-  ( <.
z ,  ( F `
 g ) >.  e.  { <. z ,  ( F `  g )
>. }  ->  <. z ,  ( F `  g
) >.  e.  ( g  u.  { <. z ,  ( F `  g ) >. } ) )
2623, 24, 253syl 17 . . . . . . . . . 10  |-  ( ph  -> 
<. z ,  ( F `
 g ) >.  e.  ( g  u.  { <. z ,  ( F `
 g ) >. } ) )
2726ad2antrr 471 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  On )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u
) ) ) )  ->  <. z ,  ( F `  g )
>.  e.  ( g  u. 
{ <. z ,  ( F `  g )
>. } ) )
28 opeldmg 4558 . . . . . . . . . . 11  |-  ( ( z  e.  _V  /\  ( F `  g )  e.  _V )  -> 
( <. z ,  ( F `  g )
>.  e.  ( g  u. 
{ <. z ,  ( F `  g )
>. } )  ->  z  e.  dom  ( g  u. 
{ <. z ,  ( F `  g )
>. } ) ) )
2919, 21, 28sylancr 405 . . . . . . . . . 10  |-  ( ph  ->  ( <. z ,  ( F `  g )
>.  e.  ( g  u. 
{ <. z ,  ( F `  g )
>. } )  ->  z  e.  dom  ( g  u. 
{ <. z ,  ( F `  g )
>. } ) ) )
3029ad2antrr 471 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  On )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u
) ) ) )  ->  ( <. z ,  ( F `  g ) >.  e.  ( g  u.  { <. z ,  ( F `  g ) >. } )  ->  z  e.  dom  ( g  u.  { <. z ,  ( F `
 g ) >. } ) ) )
3127, 30mpd 13 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  On )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u
) ) ) )  ->  z  e.  dom  ( g  u.  { <. z ,  ( F `
 g ) >. } ) )
32 dmeq 4553 . . . . . . . . . 10  |-  ( h  =  ( g  u. 
{ <. z ,  ( F `  g )
>. } )  ->  dom  h  =  dom  ( g  u.  { <. z ,  ( F `  g ) >. } ) )
3332eleq2d 2148 . . . . . . . . 9  |-  ( h  =  ( g  u. 
{ <. z ,  ( F `  g )
>. } )  ->  (
z  e.  dom  h  <->  z  e.  dom  ( g  u.  { <. z ,  ( F `  g ) >. } ) ) )
3433rspcev 2701 . . . . . . . 8  |-  ( ( ( g  u.  { <. z ,  ( F `
 g ) >. } )  e.  A  /\  z  e.  dom  ( g  u.  { <. z ,  ( F `
 g ) >. } ) )  ->  E. h  e.  A  z  e.  dom  h )
3518, 31, 34syl2anc 403 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  On )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u
) ) ) )  ->  E. h  e.  A  z  e.  dom  h )
366, 35exlimddv 1819 . . . . . 6  |-  ( (
ph  /\  z  e.  On )  ->  E. h  e.  A  z  e.  dom  h )
37 eliun 3682 . . . . . 6  |-  ( z  e.  U_ h  e.  A  dom  h  <->  E. h  e.  A  z  e.  dom  h )
3836, 37sylibr 132 . . . . 5  |-  ( (
ph  /\  z  e.  On )  ->  z  e. 
U_ h  e.  A  dom  h )
3938ex 113 . . . 4  |-  ( ph  ->  ( z  e.  On  ->  z  e.  U_ h  e.  A  dom  h ) )
4039ssrdv 3005 . . 3  |-  ( ph  ->  On  C_  U_ h  e.  A  dom  h )
411recsfval 5954 . . . . 5  |- recs ( F )  =  U. A
4241dmeqi 4554 . . . 4  |-  dom recs ( F )  =  dom  U. A
43 dmuni 4563 . . . 4  |-  dom  U. A  =  U_ h  e.  A  dom  h
4442, 43eqtri 2101 . . 3  |-  dom recs ( F )  =  U_ h  e.  A  dom  h
4540, 44syl6sseqr 3046 . 2  |-  ( ph  ->  On  C_  dom recs ( F ) )
464, 45eqssd 3016 1  |-  ( ph  ->  dom recs ( F )  =  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102   A.wal 1282    = wceq 1284    e. wcel 1433   {cab 2067   A.wral 2348   E.wrex 2349   _Vcvv 2601    u. cun 2971    C_ wss 2973   {csn 3398   <.cop 3401   U.cuni 3601   U_ciun 3678   Ord word 4117   Oncon0 4118   dom cdm 4363    |` cres 4365   Fun wfun 4916    Fn wfn 4917   ` cfv 4922  recscrecs 5942
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-recs 5943
This theorem is referenced by:  tfri1d  5972
  Copyright terms: Public domain W3C validator