ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ov Unicode version

Theorem ov 5640
Description: The value of an operation class abstraction. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
ov.1  |-  C  e. 
_V
ov.2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
ov.3  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
ov.4  |-  ( z  =  C  ->  ( ch 
<->  th ) )
ov.5  |-  ( ( x  e.  R  /\  y  e.  S )  ->  E! z ph )
ov.6  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) }
Assertion
Ref Expression
ov  |-  ( ( A  e.  R  /\  B  e.  S )  ->  ( ( A F B )  =  C  <->  th ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    x, R, y, z    x, S, y, z    th, x, y, z
Allowed substitution hints:    ph( x, y, z)    ps( x, y, z)    ch( x, y, z)    F( x, y, z)

Proof of Theorem ov
StepHypRef Expression
1 df-ov 5535 . . . . 5  |-  ( A F B )  =  ( F `  <. A ,  B >. )
2 ov.6 . . . . . 6  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) }
32fveq1i 5199 . . . . 5  |-  ( F `
 <. A ,  B >. )  =  ( {
<. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) } `  <. A ,  B >. )
41, 3eqtri 2101 . . . 4  |-  ( A F B )  =  ( { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  R  /\  y  e.  S )  /\  ph ) } `  <. A ,  B >. )
54eqeq1i 2088 . . 3  |-  ( ( A F B )  =  C  <->  ( { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) } `  <. A ,  B >. )  =  C )
6 ov.5 . . . . . 6  |-  ( ( x  e.  R  /\  y  e.  S )  ->  E! z ph )
76fnoprab 5624 . . . . 5  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S
)  /\  ph ) }  Fn  { <. x ,  y >.  |  ( x  e.  R  /\  y  e.  S ) }
8 eleq1 2141 . . . . . . . 8  |-  ( x  =  A  ->  (
x  e.  R  <->  A  e.  R ) )
98anbi1d 452 . . . . . . 7  |-  ( x  =  A  ->  (
( x  e.  R  /\  y  e.  S
)  <->  ( A  e.  R  /\  y  e.  S ) ) )
10 eleq1 2141 . . . . . . . 8  |-  ( y  =  B  ->  (
y  e.  S  <->  B  e.  S ) )
1110anbi2d 451 . . . . . . 7  |-  ( y  =  B  ->  (
( A  e.  R  /\  y  e.  S
)  <->  ( A  e.  R  /\  B  e.  S ) ) )
129, 11opelopabg 4023 . . . . . 6  |-  ( ( A  e.  R  /\  B  e.  S )  ->  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ( x  e.  R  /\  y  e.  S ) } 
<->  ( A  e.  R  /\  B  e.  S
) ) )
1312ibir 175 . . . . 5  |-  ( ( A  e.  R  /\  B  e.  S )  -> 
<. A ,  B >.  e. 
{ <. x ,  y
>.  |  ( x  e.  R  /\  y  e.  S ) } )
14 fnopfvb 5236 . . . . 5  |-  ( ( { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) }  Fn  { <. x ,  y >.  |  ( x  e.  R  /\  y  e.  S ) }  /\  <. A ,  B >.  e.  { <. x ,  y >.  |  ( x  e.  R  /\  y  e.  S ) } )  ->  (
( { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  R  /\  y  e.  S )  /\  ph ) } `  <. A ,  B >. )  =  C  <->  <. <. A ,  B >. ,  C >.  e. 
{ <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) } ) )
157, 13, 14sylancr 405 . . . 4  |-  ( ( A  e.  R  /\  B  e.  S )  ->  ( ( { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S
)  /\  ph ) } `
 <. A ,  B >. )  =  C  <->  <. <. A ,  B >. ,  C >.  e. 
{ <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) } ) )
16 ov.1 . . . . 5  |-  C  e. 
_V
17 ov.2 . . . . . . 7  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
189, 17anbi12d 456 . . . . . 6  |-  ( x  =  A  ->  (
( ( x  e.  R  /\  y  e.  S )  /\  ph ) 
<->  ( ( A  e.  R  /\  y  e.  S )  /\  ps ) ) )
19 ov.3 . . . . . . 7  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
2011, 19anbi12d 456 . . . . . 6  |-  ( y  =  B  ->  (
( ( A  e.  R  /\  y  e.  S )  /\  ps ) 
<->  ( ( A  e.  R  /\  B  e.  S )  /\  ch ) ) )
21 ov.4 . . . . . . 7  |-  ( z  =  C  ->  ( ch 
<->  th ) )
2221anbi2d 451 . . . . . 6  |-  ( z  =  C  ->  (
( ( A  e.  R  /\  B  e.  S )  /\  ch ) 
<->  ( ( A  e.  R  /\  B  e.  S )  /\  th ) ) )
2318, 20, 22eloprabg 5612 . . . . 5  |-  ( ( A  e.  R  /\  B  e.  S  /\  C  e.  _V )  ->  ( <. <. A ,  B >. ,  C >.  e.  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) }  <->  ( ( A  e.  R  /\  B  e.  S )  /\  th ) ) )
2416, 23mp3an3 1257 . . . 4  |-  ( ( A  e.  R  /\  B  e.  S )  ->  ( <. <. A ,  B >. ,  C >.  e.  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) }  <->  ( ( A  e.  R  /\  B  e.  S )  /\  th ) ) )
2515, 24bitrd 186 . . 3  |-  ( ( A  e.  R  /\  B  e.  S )  ->  ( ( { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S
)  /\  ph ) } `
 <. A ,  B >. )  =  C  <->  ( ( A  e.  R  /\  B  e.  S )  /\  th ) ) )
265, 25syl5bb 190 . 2  |-  ( ( A  e.  R  /\  B  e.  S )  ->  ( ( A F B )  =  C  <-> 
( ( A  e.  R  /\  B  e.  S )  /\  th ) ) )
2726bianabs 575 1  |-  ( ( A  e.  R  /\  B  e.  S )  ->  ( ( A F B )  =  C  <->  th ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   E!weu 1941   _Vcvv 2601   <.cop 3401   {copab 3838    Fn wfn 4917   ` cfv 4922  (class class class)co 5532   {coprab 5533
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fn 4925  df-fv 4930  df-ov 5535  df-oprab 5536
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator