| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ov2gf | Unicode version | ||
| Description: The value of an operation class abstraction. A version of ovmpt2g 5655 using bound-variable hypotheses. (Contributed by NM, 17-Aug-2006.) (Revised by Mario Carneiro, 19-Dec-2013.) |
| Ref | Expression |
|---|---|
| ov2gf.a |
|
| ov2gf.c |
|
| ov2gf.d |
|
| ov2gf.1 |
|
| ov2gf.2 |
|
| ov2gf.3 |
|
| ov2gf.4 |
|
| ov2gf.5 |
|
| Ref | Expression |
|---|---|
| ov2gf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2610 |
. . 3
| |
| 2 | ov2gf.a |
. . . 4
| |
| 3 | ov2gf.c |
. . . 4
| |
| 4 | ov2gf.d |
. . . 4
| |
| 5 | ov2gf.1 |
. . . . . 6
| |
| 6 | 5 | nfel1 2229 |
. . . . 5
|
| 7 | ov2gf.5 |
. . . . . . . 8
| |
| 8 | nfmpt21 5591 |
. . . . . . . 8
| |
| 9 | 7, 8 | nfcxfr 2216 |
. . . . . . 7
|
| 10 | nfcv 2219 |
. . . . . . 7
| |
| 11 | 2, 9, 10 | nfov 5555 |
. . . . . 6
|
| 12 | 11, 5 | nfeq 2226 |
. . . . 5
|
| 13 | 6, 12 | nfim 1504 |
. . . 4
|
| 14 | ov2gf.2 |
. . . . . 6
| |
| 15 | 14 | nfel1 2229 |
. . . . 5
|
| 16 | nfmpt22 5592 |
. . . . . . . 8
| |
| 17 | 7, 16 | nfcxfr 2216 |
. . . . . . 7
|
| 18 | 3, 17, 4 | nfov 5555 |
. . . . . 6
|
| 19 | 18, 14 | nfeq 2226 |
. . . . 5
|
| 20 | 15, 19 | nfim 1504 |
. . . 4
|
| 21 | ov2gf.3 |
. . . . . 6
| |
| 22 | 21 | eleq1d 2147 |
. . . . 5
|
| 23 | oveq1 5539 |
. . . . . 6
| |
| 24 | 23, 21 | eqeq12d 2095 |
. . . . 5
|
| 25 | 22, 24 | imbi12d 232 |
. . . 4
|
| 26 | ov2gf.4 |
. . . . . 6
| |
| 27 | 26 | eleq1d 2147 |
. . . . 5
|
| 28 | oveq2 5540 |
. . . . . 6
| |
| 29 | 28, 26 | eqeq12d 2095 |
. . . . 5
|
| 30 | 27, 29 | imbi12d 232 |
. . . 4
|
| 31 | 7 | ovmpt4g 5643 |
. . . . 5
|
| 32 | 31 | 3expia 1140 |
. . . 4
|
| 33 | 2, 3, 4, 13, 20, 25, 30, 32 | vtocl2gaf 2665 |
. . 3
|
| 34 | 1, 33 | syl5 32 |
. 2
|
| 35 | 34 | 3impia 1135 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-setind 4280 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-iota 4887 df-fun 4924 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |