ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preqr1 Unicode version

Theorem preqr1 3560
Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. (Contributed by NM, 18-Oct-1995.)
Hypotheses
Ref Expression
preqr1.1  |-  A  e. 
_V
preqr1.2  |-  B  e. 
_V
Assertion
Ref Expression
preqr1  |-  ( { A ,  C }  =  { B ,  C }  ->  A  =  B )

Proof of Theorem preqr1
StepHypRef Expression
1 preqr1.1 . . . . 5  |-  A  e. 
_V
21prid1 3498 . . . 4  |-  A  e. 
{ A ,  C }
3 eleq2 2142 . . . 4  |-  ( { A ,  C }  =  { B ,  C }  ->  ( A  e. 
{ A ,  C } 
<->  A  e.  { B ,  C } ) )
42, 3mpbii 146 . . 3  |-  ( { A ,  C }  =  { B ,  C }  ->  A  e.  { B ,  C }
)
51elpr 3419 . . 3  |-  ( A  e.  { B ,  C }  <->  ( A  =  B  \/  A  =  C ) )
64, 5sylib 120 . 2  |-  ( { A ,  C }  =  { B ,  C }  ->  ( A  =  B  \/  A  =  C ) )
7 preqr1.2 . . . . 5  |-  B  e. 
_V
87prid1 3498 . . . 4  |-  B  e. 
{ B ,  C }
9 eleq2 2142 . . . 4  |-  ( { A ,  C }  =  { B ,  C }  ->  ( B  e. 
{ A ,  C } 
<->  B  e.  { B ,  C } ) )
108, 9mpbiri 166 . . 3  |-  ( { A ,  C }  =  { B ,  C }  ->  B  e.  { A ,  C }
)
117elpr 3419 . . 3  |-  ( B  e.  { A ,  C }  <->  ( B  =  A  \/  B  =  C ) )
1210, 11sylib 120 . 2  |-  ( { A ,  C }  =  { B ,  C }  ->  ( B  =  A  \/  B  =  C ) )
13 eqcom 2083 . 2  |-  ( A  =  B  <->  B  =  A )
14 eqeq2 2090 . 2  |-  ( A  =  C  ->  ( B  =  A  <->  B  =  C ) )
156, 12, 13, 14oplem1 916 1  |-  ( { A ,  C }  =  { B ,  C }  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 661    = wceq 1284    e. wcel 1433   _Vcvv 2601   {cpr 3399
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-sn 3404  df-pr 3405
This theorem is referenced by:  preqr2  3561
  Copyright terms: Public domain W3C validator