ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preqr1 GIF version

Theorem preqr1 3560
Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. (Contributed by NM, 18-Oct-1995.)
Hypotheses
Ref Expression
preqr1.1 𝐴 ∈ V
preqr1.2 𝐵 ∈ V
Assertion
Ref Expression
preqr1 ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵)

Proof of Theorem preqr1
StepHypRef Expression
1 preqr1.1 . . . . 5 𝐴 ∈ V
21prid1 3498 . . . 4 𝐴 ∈ {𝐴, 𝐶}
3 eleq2 2142 . . . 4 ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐴 ∈ {𝐴, 𝐶} ↔ 𝐴 ∈ {𝐵, 𝐶}))
42, 3mpbii 146 . . 3 ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 ∈ {𝐵, 𝐶})
51elpr 3419 . . 3 (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵𝐴 = 𝐶))
64, 5sylib 120 . 2 ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐴 = 𝐵𝐴 = 𝐶))
7 preqr1.2 . . . . 5 𝐵 ∈ V
87prid1 3498 . . . 4 𝐵 ∈ {𝐵, 𝐶}
9 eleq2 2142 . . . 4 ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐵 ∈ {𝐴, 𝐶} ↔ 𝐵 ∈ {𝐵, 𝐶}))
108, 9mpbiri 166 . . 3 ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐵 ∈ {𝐴, 𝐶})
117elpr 3419 . . 3 (𝐵 ∈ {𝐴, 𝐶} ↔ (𝐵 = 𝐴𝐵 = 𝐶))
1210, 11sylib 120 . 2 ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐵 = 𝐴𝐵 = 𝐶))
13 eqcom 2083 . 2 (𝐴 = 𝐵𝐵 = 𝐴)
14 eqeq2 2090 . 2 (𝐴 = 𝐶 → (𝐵 = 𝐴𝐵 = 𝐶))
156, 12, 13, 14oplem1 916 1 ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 661   = wceq 1284  wcel 1433  Vcvv 2601  {cpr 3399
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-sn 3404  df-pr 3405
This theorem is referenced by:  preqr2  3561
  Copyright terms: Public domain W3C validator