| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > preqr1 | GIF version | ||
| Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. (Contributed by NM, 18-Oct-1995.) |
| Ref | Expression |
|---|---|
| preqr1.1 | ⊢ 𝐴 ∈ V |
| preqr1.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| preqr1 | ⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preqr1.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
| 2 | 1 | prid1 3498 | . . . 4 ⊢ 𝐴 ∈ {𝐴, 𝐶} |
| 3 | eleq2 2142 | . . . 4 ⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐴 ∈ {𝐴, 𝐶} ↔ 𝐴 ∈ {𝐵, 𝐶})) | |
| 4 | 2, 3 | mpbii 146 | . . 3 ⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 ∈ {𝐵, 𝐶}) |
| 5 | 1 | elpr 3419 | . . 3 ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
| 6 | 4, 5 | sylib 120 | . 2 ⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
| 7 | preqr1.2 | . . . . 5 ⊢ 𝐵 ∈ V | |
| 8 | 7 | prid1 3498 | . . . 4 ⊢ 𝐵 ∈ {𝐵, 𝐶} |
| 9 | eleq2 2142 | . . . 4 ⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐵 ∈ {𝐴, 𝐶} ↔ 𝐵 ∈ {𝐵, 𝐶})) | |
| 10 | 8, 9 | mpbiri 166 | . . 3 ⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐵 ∈ {𝐴, 𝐶}) |
| 11 | 7 | elpr 3419 | . . 3 ⊢ (𝐵 ∈ {𝐴, 𝐶} ↔ (𝐵 = 𝐴 ∨ 𝐵 = 𝐶)) |
| 12 | 10, 11 | sylib 120 | . 2 ⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐵 = 𝐴 ∨ 𝐵 = 𝐶)) |
| 13 | eqcom 2083 | . 2 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
| 14 | eqeq2 2090 | . 2 ⊢ (𝐴 = 𝐶 → (𝐵 = 𝐴 ↔ 𝐵 = 𝐶)) | |
| 15 | 6, 12, 13, 14 | oplem1 916 | 1 ⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 661 = wceq 1284 ∈ wcel 1433 Vcvv 2601 {cpr 3399 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-un 2977 df-sn 3404 df-pr 3405 |
| This theorem is referenced by: preqr2 3561 |
| Copyright terms: Public domain | W3C validator |