| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > preqr1g | Unicode version | ||
| Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. Closed form of preqr1 3560. (Contributed by Jim Kingdon, 21-Sep-2018.) |
| Ref | Expression |
|---|---|
| preqr1g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prid1g 3496 |
. . . . . . 7
| |
| 2 | eleq2 2142 |
. . . . . . 7
| |
| 3 | 1, 2 | syl5ibcom 153 |
. . . . . 6
|
| 4 | elprg 3418 |
. . . . . 6
| |
| 5 | 3, 4 | sylibd 147 |
. . . . 5
|
| 6 | 5 | adantr 270 |
. . . 4
|
| 7 | 6 | imp 122 |
. . 3
|
| 8 | prid1g 3496 |
. . . . . . 7
| |
| 9 | eleq2 2142 |
. . . . . . 7
| |
| 10 | 8, 9 | syl5ibrcom 155 |
. . . . . 6
|
| 11 | elprg 3418 |
. . . . . 6
| |
| 12 | 10, 11 | sylibd 147 |
. . . . 5
|
| 13 | 12 | adantl 271 |
. . . 4
|
| 14 | 13 | imp 122 |
. . 3
|
| 15 | eqcom 2083 |
. . 3
| |
| 16 | eqeq2 2090 |
. . 3
| |
| 17 | 7, 14, 15, 16 | oplem1 916 |
. 2
|
| 18 | 17 | ex 113 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-un 2977 df-sn 3404 df-pr 3405 |
| This theorem is referenced by: preqr2g 3559 |
| Copyright terms: Public domain | W3C validator |