ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preqr1g GIF version

Theorem preqr1g 3558
Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. Closed form of preqr1 3560. (Contributed by Jim Kingdon, 21-Sep-2018.)
Assertion
Ref Expression
preqr1g ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵))

Proof of Theorem preqr1g
StepHypRef Expression
1 prid1g 3496 . . . . . . 7 (𝐴 ∈ V → 𝐴 ∈ {𝐴, 𝐶})
2 eleq2 2142 . . . . . . 7 ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐴 ∈ {𝐴, 𝐶} ↔ 𝐴 ∈ {𝐵, 𝐶}))
31, 2syl5ibcom 153 . . . . . 6 (𝐴 ∈ V → ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 ∈ {𝐵, 𝐶}))
4 elprg 3418 . . . . . 6 (𝐴 ∈ V → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵𝐴 = 𝐶)))
53, 4sylibd 147 . . . . 5 (𝐴 ∈ V → ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐴 = 𝐵𝐴 = 𝐶)))
65adantr 270 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐴 = 𝐵𝐴 = 𝐶)))
76imp 122 . . 3 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ {𝐴, 𝐶} = {𝐵, 𝐶}) → (𝐴 = 𝐵𝐴 = 𝐶))
8 prid1g 3496 . . . . . . 7 (𝐵 ∈ V → 𝐵 ∈ {𝐵, 𝐶})
9 eleq2 2142 . . . . . . 7 ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐵 ∈ {𝐴, 𝐶} ↔ 𝐵 ∈ {𝐵, 𝐶}))
108, 9syl5ibrcom 155 . . . . . 6 (𝐵 ∈ V → ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐵 ∈ {𝐴, 𝐶}))
11 elprg 3418 . . . . . 6 (𝐵 ∈ V → (𝐵 ∈ {𝐴, 𝐶} ↔ (𝐵 = 𝐴𝐵 = 𝐶)))
1210, 11sylibd 147 . . . . 5 (𝐵 ∈ V → ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐵 = 𝐴𝐵 = 𝐶)))
1312adantl 271 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐵 = 𝐴𝐵 = 𝐶)))
1413imp 122 . . 3 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ {𝐴, 𝐶} = {𝐵, 𝐶}) → (𝐵 = 𝐴𝐵 = 𝐶))
15 eqcom 2083 . . 3 (𝐴 = 𝐵𝐵 = 𝐴)
16 eqeq2 2090 . . 3 (𝐴 = 𝐶 → (𝐵 = 𝐴𝐵 = 𝐶))
177, 14, 15, 16oplem1 916 . 2 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ {𝐴, 𝐶} = {𝐵, 𝐶}) → 𝐴 = 𝐵)
1817ex 113 1 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wo 661   = wceq 1284  wcel 1433  Vcvv 2601  {cpr 3399
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-sn 3404  df-pr 3405
This theorem is referenced by:  preqr2g  3559
  Copyright terms: Public domain W3C validator