ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwel Unicode version

Theorem pwel 3973
Description: Membership of a power class. Exercise 10 of [Enderton] p. 26. (Contributed by NM, 13-Jan-2007.)
Assertion
Ref Expression
pwel  |-  ( A  e.  B  ->  ~P A  e.  ~P ~P U. B )

Proof of Theorem pwel
StepHypRef Expression
1 elssuni 3629 . . 3  |-  ( A  e.  B  ->  A  C_ 
U. B )
2 sspwb 3971 . . 3  |-  ( A 
C_  U. B  <->  ~P A  C_ 
~P U. B )
31, 2sylib 120 . 2  |-  ( A  e.  B  ->  ~P A  C_  ~P U. B
)
4 pwexg 3954 . . 3  |-  ( A  e.  B  ->  ~P A  e.  _V )
5 elpwg 3390 . . 3  |-  ( ~P A  e.  _V  ->  ( ~P A  e.  ~P ~P U. B  <->  ~P A  C_ 
~P U. B ) )
64, 5syl 14 . 2  |-  ( A  e.  B  ->  ( ~P A  e.  ~P ~P U. B  <->  ~P A  C_ 
~P U. B ) )
73, 6mpbird 165 1  |-  ( A  e.  B  ->  ~P A  e.  ~P ~P U. B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    e. wcel 1433   _Vcvv 2601    C_ wss 2973   ~Pcpw 3382   U.cuni 3601
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-uni 3602
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator