| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwexg | Unicode version | ||
| Description: Power set axiom expressed in class notation, with the sethood requirement as an antecedent. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) |
| Ref | Expression |
|---|---|
| pwexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq 3385 |
. . 3
| |
| 2 | 1 | eleq1d 2147 |
. 2
|
| 3 | vex 2604 |
. . 3
| |
| 4 | 3 | pwex 3953 |
. 2
|
| 5 | 2, 4 | vtoclg 2658 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-in 2979 df-ss 2986 df-pw 3384 |
| This theorem is referenced by: abssexg 3955 snexg 3956 pwel 3973 uniexb 4223 xpexg 4470 fabexg 5097 fopwdom 6333 |
| Copyright terms: Public domain | W3C validator |