| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sspwb | Unicode version | ||
| Description: Classes are subclasses if and only if their power classes are subclasses. Exercise 18 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.) |
| Ref | Expression |
|---|---|
| sspwb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3006 |
. . . . 5
| |
| 2 | 1 | com12 30 |
. . . 4
|
| 3 | vex 2604 |
. . . . 5
| |
| 4 | 3 | elpw 3388 |
. . . 4
|
| 5 | 3 | elpw 3388 |
. . . 4
|
| 6 | 2, 4, 5 | 3imtr4g 203 |
. . 3
|
| 7 | 6 | ssrdv 3005 |
. 2
|
| 8 | ssel 2993 |
. . . 4
| |
| 9 | 3 | snex 3957 |
. . . . . 6
|
| 10 | 9 | elpw 3388 |
. . . . 5
|
| 11 | 3 | snss 3516 |
. . . . 5
|
| 12 | 10, 11 | bitr4i 185 |
. . . 4
|
| 13 | 9 | elpw 3388 |
. . . . 5
|
| 14 | 3 | snss 3516 |
. . . . 5
|
| 15 | 13, 14 | bitr4i 185 |
. . . 4
|
| 16 | 8, 12, 15 | 3imtr3g 202 |
. . 3
|
| 17 | 16 | ssrdv 3005 |
. 2
|
| 18 | 7, 17 | impbii 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 |
| This theorem is referenced by: pwel 3973 ssextss 3975 pweqb 3978 |
| Copyright terms: Public domain | W3C validator |