ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sspwb Unicode version

Theorem sspwb 3971
Description: Classes are subclasses if and only if their power classes are subclasses. Exercise 18 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.)
Assertion
Ref Expression
sspwb  |-  ( A 
C_  B  <->  ~P A  C_ 
~P B )

Proof of Theorem sspwb
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sstr2 3006 . . . . 5  |-  ( x 
C_  A  ->  ( A  C_  B  ->  x  C_  B ) )
21com12 30 . . . 4  |-  ( A 
C_  B  ->  (
x  C_  A  ->  x 
C_  B ) )
3 vex 2604 . . . . 5  |-  x  e. 
_V
43elpw 3388 . . . 4  |-  ( x  e.  ~P A  <->  x  C_  A
)
53elpw 3388 . . . 4  |-  ( x  e.  ~P B  <->  x  C_  B
)
62, 4, 53imtr4g 203 . . 3  |-  ( A 
C_  B  ->  (
x  e.  ~P A  ->  x  e.  ~P B
) )
76ssrdv 3005 . 2  |-  ( A 
C_  B  ->  ~P A  C_  ~P B )
8 ssel 2993 . . . 4  |-  ( ~P A  C_  ~P B  ->  ( { x }  e.  ~P A  ->  { x }  e.  ~P B
) )
93snex 3957 . . . . . 6  |-  { x }  e.  _V
109elpw 3388 . . . . 5  |-  ( { x }  e.  ~P A 
<->  { x }  C_  A )
113snss 3516 . . . . 5  |-  ( x  e.  A  <->  { x }  C_  A )
1210, 11bitr4i 185 . . . 4  |-  ( { x }  e.  ~P A 
<->  x  e.  A )
139elpw 3388 . . . . 5  |-  ( { x }  e.  ~P B 
<->  { x }  C_  B )
143snss 3516 . . . . 5  |-  ( x  e.  B  <->  { x }  C_  B )
1513, 14bitr4i 185 . . . 4  |-  ( { x }  e.  ~P B 
<->  x  e.  B )
168, 12, 153imtr3g 202 . . 3  |-  ( ~P A  C_  ~P B  ->  ( x  e.  A  ->  x  e.  B ) )
1716ssrdv 3005 . 2  |-  ( ~P A  C_  ~P B  ->  A  C_  B )
187, 17impbii 124 1  |-  ( A 
C_  B  <->  ~P A  C_ 
~P B )
Colors of variables: wff set class
Syntax hints:    <-> wb 103    e. wcel 1433    C_ wss 2973   ~Pcpw 3382   {csn 3398
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404
This theorem is referenced by:  pwel  3973  ssextss  3975  pweqb  3978
  Copyright terms: Public domain W3C validator