ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pweqb Unicode version

Theorem pweqb 3978
Description: Classes are equal if and only if their power classes are equal. Exercise 19 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.)
Assertion
Ref Expression
pweqb  |-  ( A  =  B  <->  ~P A  =  ~P B )

Proof of Theorem pweqb
StepHypRef Expression
1 sspwb 3971 . . 3  |-  ( A 
C_  B  <->  ~P A  C_ 
~P B )
2 sspwb 3971 . . 3  |-  ( B 
C_  A  <->  ~P B  C_ 
~P A )
31, 2anbi12i 447 . 2  |-  ( ( A  C_  B  /\  B  C_  A )  <->  ( ~P A  C_  ~P B  /\  ~P B  C_  ~P A
) )
4 eqss 3014 . 2  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
5 eqss 3014 . 2  |-  ( ~P A  =  ~P B  <->  ( ~P A  C_  ~P B  /\  ~P B  C_  ~P A ) )
63, 4, 53bitr4i 210 1  |-  ( A  =  B  <->  ~P A  =  ~P B )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103    = wceq 1284    C_ wss 2973   ~Pcpw 3382
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator