ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qliftf Unicode version

Theorem qliftf 6214
Description: The domain and range of the function  F. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
qlift.1  |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )
qlift.2  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  Y )
qlift.3  |-  ( ph  ->  R  Er  X )
qlift.4  |-  ( ph  ->  X  e.  _V )
Assertion
Ref Expression
qliftf  |-  ( ph  ->  ( Fun  F  <->  F :
( X /. R
) --> Y ) )
Distinct variable groups:    ph, x    x, R    x, X    x, Y
Allowed substitution hints:    A( x)    F( x)

Proof of Theorem qliftf
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 qlift.1 . . 3  |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )
2 qlift.2 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  Y )
3 qlift.3 . . . 4  |-  ( ph  ->  R  Er  X )
4 qlift.4 . . . 4  |-  ( ph  ->  X  e.  _V )
51, 2, 3, 4qliftlem 6207 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  [ x ] R  e.  ( X /. R ) )
61, 5, 2fliftf 5459 . 2  |-  ( ph  ->  ( Fun  F  <->  F : ran  ( x  e.  X  |->  [ x ] R
) --> Y ) )
7 df-qs 6135 . . . . 5  |-  ( X /. R )  =  { y  |  E. x  e.  X  y  =  [ x ] R }
8 eqid 2081 . . . . . 6  |-  ( x  e.  X  |->  [ x ] R )  =  ( x  e.  X  |->  [ x ] R )
98rnmpt 4600 . . . . 5  |-  ran  (
x  e.  X  |->  [ x ] R )  =  { y  |  E. x  e.  X  y  =  [ x ] R }
107, 9eqtr4i 2104 . . . 4  |-  ( X /. R )  =  ran  ( x  e.  X  |->  [ x ] R )
1110a1i 9 . . 3  |-  ( ph  ->  ( X /. R
)  =  ran  (
x  e.  X  |->  [ x ] R ) )
1211feq2d 5055 . 2  |-  ( ph  ->  ( F : ( X /. R ) --> Y  <->  F : ran  (
x  e.  X  |->  [ x ] R ) --> Y ) )
136, 12bitr4d 189 1  |-  ( ph  ->  ( Fun  F  <->  F :
( X /. R
) --> Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   {cab 2067   E.wrex 2349   _Vcvv 2601   <.cop 3401    |-> cmpt 3839   ran crn 4364   Fun wfun 4916   -->wf 4918    Er wer 6126   [cec 6127   /.cqs 6128
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-er 6129  df-ec 6131  df-qs 6135
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator