| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > r19.9rmv | Unicode version | ||
| Description: Restricted quantification of wff not containing quantified variable. (Contributed by Jim Kingdon, 5-Aug-2018.) |
| Ref | Expression |
|---|---|
| r19.9rmv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2141 |
. . 3
| |
| 2 | 1 | cbvexv 1836 |
. 2
|
| 3 | eleq1 2141 |
. . . 4
| |
| 4 | 3 | cbvexv 1836 |
. . 3
|
| 5 | df-rex 2354 |
. . . . 5
| |
| 6 | 19.41v 1823 |
. . . . 5
| |
| 7 | 5, 6 | bitri 182 |
. . . 4
|
| 8 | 7 | baibr 862 |
. . 3
|
| 9 | 4, 8 | sylbi 119 |
. 2
|
| 10 | 2, 9 | sylbir 133 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-cleq 2074 df-clel 2077 df-rex 2354 |
| This theorem is referenced by: r19.45mv 3335 iunconstm 3686 fconstfvm 5400 ltexprlemloc 6797 lcmgcdlem 10459 |
| Copyright terms: Public domain | W3C validator |