ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.9rmv Unicode version

Theorem r19.9rmv 3333
Description: Restricted quantification of wff not containing quantified variable. (Contributed by Jim Kingdon, 5-Aug-2018.)
Assertion
Ref Expression
r19.9rmv  |-  ( E. y  y  e.  A  ->  ( ph  <->  E. x  e.  A  ph ) )
Distinct variable groups:    x, A    y, A    ph, x
Allowed substitution hint:    ph( y)

Proof of Theorem r19.9rmv
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 eleq1 2141 . . 3  |-  ( a  =  y  ->  (
a  e.  A  <->  y  e.  A ) )
21cbvexv 1836 . 2  |-  ( E. a  a  e.  A  <->  E. y  y  e.  A
)
3 eleq1 2141 . . . 4  |-  ( a  =  x  ->  (
a  e.  A  <->  x  e.  A ) )
43cbvexv 1836 . . 3  |-  ( E. a  a  e.  A  <->  E. x  x  e.  A
)
5 df-rex 2354 . . . . 5  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
6 19.41v 1823 . . . . 5  |-  ( E. x ( x  e.  A  /\  ph )  <->  ( E. x  x  e.  A  /\  ph )
)
75, 6bitri 182 . . . 4  |-  ( E. x  e.  A  ph  <->  ( E. x  x  e.  A  /\  ph )
)
87baibr 862 . . 3  |-  ( E. x  x  e.  A  ->  ( ph  <->  E. x  e.  A  ph ) )
94, 8sylbi 119 . 2  |-  ( E. a  a  e.  A  ->  ( ph  <->  E. x  e.  A  ph ) )
102, 9sylbir 133 1  |-  ( E. y  y  e.  A  ->  ( ph  <->  E. x  e.  A  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103   E.wex 1421    e. wcel 1433   E.wrex 2349
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-cleq 2074  df-clel 2077  df-rex 2354
This theorem is referenced by:  r19.45mv  3335  iunconstm  3686  fconstfvm  5400  ltexprlemloc  6797  lcmgcdlem  10459
  Copyright terms: Public domain W3C validator