| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fconstfvm | Unicode version | ||
| Description: A constant function expressed in terms of its functionality, domain, and value. See also fconst2 5399. (Contributed by Jim Kingdon, 8-Jan-2019.) |
| Ref | Expression |
|---|---|
| fconstfvm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5066 |
. . 3
| |
| 2 | fvconst 5372 |
. . . 4
| |
| 3 | 2 | ralrimiva 2434 |
. . 3
|
| 4 | 1, 3 | jca 300 |
. 2
|
| 5 | fvelrnb 5242 |
. . . . . . . . 9
| |
| 6 | fveq2 5198 |
. . . . . . . . . . . . . 14
| |
| 7 | 6 | eqeq1d 2089 |
. . . . . . . . . . . . 13
|
| 8 | 7 | rspccva 2700 |
. . . . . . . . . . . 12
|
| 9 | 8 | eqeq1d 2089 |
. . . . . . . . . . 11
|
| 10 | 9 | rexbidva 2365 |
. . . . . . . . . 10
|
| 11 | r19.9rmv 3333 |
. . . . . . . . . . 11
| |
| 12 | 11 | bicomd 139 |
. . . . . . . . . 10
|
| 13 | 10, 12 | sylan9bbr 450 |
. . . . . . . . 9
|
| 14 | 5, 13 | sylan9bbr 450 |
. . . . . . . 8
|
| 15 | velsn 3415 |
. . . . . . . . 9
| |
| 16 | eqcom 2083 |
. . . . . . . . 9
| |
| 17 | 15, 16 | bitr2i 183 |
. . . . . . . 8
|
| 18 | 14, 17 | syl6bb 194 |
. . . . . . 7
|
| 19 | 18 | eqrdv 2079 |
. . . . . 6
|
| 20 | 19 | an32s 532 |
. . . . 5
|
| 21 | 20 | exp31 356 |
. . . 4
|
| 22 | 21 | imdistand 435 |
. . 3
|
| 23 | df-fo 4928 |
. . . 4
| |
| 24 | fof 5126 |
. . . 4
| |
| 25 | 23, 24 | sylbir 133 |
. . 3
|
| 26 | 22, 25 | syl6 33 |
. 2
|
| 27 | 4, 26 | impbid2 141 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fo 4928 df-fv 4930 |
| This theorem is referenced by: fconst3m 5401 |
| Copyright terms: Public domain | W3C validator |