ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemloc Unicode version

Theorem ltexprlemloc 6797
Description: Our constructed difference is located. Lemma for ltexpri 6803. (Contributed by Jim Kingdon, 17-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
Assertion
Ref Expression
ltexprlemloc  |-  ( A 
<P  B  ->  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  C
)  \/  r  e.  ( 2nd `  C
) ) ) )
Distinct variable groups:    x, y, q, r, A    x, B, y, q, r    x, C, y, q, r

Proof of Theorem ltexprlemloc
Dummy variables  z  w  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexnqi 6599 . . . . . 6  |-  ( q 
<Q  r  ->  E. w  e.  Q.  ( q  +Q  w )  =  r )
21adantl 271 . . . . 5  |-  ( ( A  <P  B  /\  q  <Q  r )  ->  E. w  e.  Q.  ( q  +Q  w
)  =  r )
3 ltrelpr 6695 . . . . . . . . . 10  |-  <P  C_  ( P.  X.  P. )
43brel 4410 . . . . . . . . 9  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
54simpld 110 . . . . . . . 8  |-  ( A 
<P  B  ->  A  e. 
P. )
6 prop 6665 . . . . . . . . 9  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
7 prarloc 6693 . . . . . . . . 9  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  w  e.  Q. )  ->  E. z  e.  ( 1st `  A ) E. y  e.  ( 2nd `  A ) y  <Q  ( z  +Q  w ) )
86, 7sylan 277 . . . . . . . 8  |-  ( ( A  e.  P.  /\  w  e.  Q. )  ->  E. z  e.  ( 1st `  A ) E. y  e.  ( 2nd `  A ) y  <Q  ( z  +Q  w ) )
95, 8sylan 277 . . . . . . 7  |-  ( ( A  <P  B  /\  w  e.  Q. )  ->  E. z  e.  ( 1st `  A ) E. y  e.  ( 2nd `  A ) y  <Q  ( z  +Q  w ) )
109ad2ant2r 492 . . . . . 6  |-  ( ( ( A  <P  B  /\  q  <Q  r )  /\  ( w  e.  Q.  /\  ( q  +Q  w
)  =  r ) )  ->  E. z  e.  ( 1st `  A
) E. y  e.  ( 2nd `  A
) y  <Q  (
z  +Q  w ) )
114simprd 112 . . . . . . . . . . . . . 14  |-  ( A 
<P  B  ->  B  e. 
P. )
1211ad2antrr 471 . . . . . . . . . . . . 13  |-  ( ( ( A  <P  B  /\  q  <Q  r )  /\  ( w  e.  Q.  /\  ( q  +Q  w
)  =  r ) )  ->  B  e.  P. )
1312ad2antrr 471 . . . . . . . . . . . 12  |-  ( ( ( ( ( A 
<P  B  /\  q  <Q  r )  /\  (
w  e.  Q.  /\  ( q  +Q  w
)  =  r ) )  /\  ( z  e.  ( 1st `  A
)  /\  y  e.  ( 2nd `  A ) ) )  /\  y  <Q  ( z  +Q  w
) )  ->  B  e.  P. )
14 ltanqg 6590 . . . . . . . . . . . . . . . 16  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
1514adantl 271 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A 
<P  B  /\  q  <Q  r )  /\  (
w  e.  Q.  /\  ( q  +Q  w
)  =  r ) )  /\  ( z  e.  ( 1st `  A
)  /\  y  e.  ( 2nd `  A ) ) )  /\  (
f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. ) )  -> 
( f  <Q  g  <->  ( h  +Q  f ) 
<Q  ( h  +Q  g
) ) )
16 elprnqu 6672 . . . . . . . . . . . . . . . . . . 19  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  y  e.  ( 2nd `  A ) )  -> 
y  e.  Q. )
176, 16sylan 277 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  P.  /\  y  e.  ( 2nd `  A ) )  -> 
y  e.  Q. )
185, 17sylan 277 . . . . . . . . . . . . . . . . 17  |-  ( ( A  <P  B  /\  y  e.  ( 2nd `  A ) )  -> 
y  e.  Q. )
1918adantlr 460 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  <P  B  /\  q  <Q  r )  /\  y  e.  ( 2nd `  A ) )  -> 
y  e.  Q. )
2019ad2ant2rl 494 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  y  e.  Q. )
21 elprnql 6671 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  z  e.  ( 1st `  A ) )  -> 
z  e.  Q. )
226, 21sylan 277 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  P.  /\  z  e.  ( 1st `  A ) )  -> 
z  e.  Q. )
235, 22sylan 277 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  <P  B  /\  z  e.  ( 1st `  A ) )  -> 
z  e.  Q. )
2423adantlr 460 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  <P  B  /\  q  <Q  r )  /\  z  e.  ( 1st `  A ) )  -> 
z  e.  Q. )
2524ad2ant2r 492 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  z  e.  Q. )
26 simplrl 501 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  w  e.  Q. )
27 addclnq 6565 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  Q.  /\  w  e.  Q. )  ->  ( z  +Q  w
)  e.  Q. )
2825, 26, 27syl2anc 403 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  (
z  +Q  w )  e.  Q. )
29 ltrelnq 6555 . . . . . . . . . . . . . . . . . . 19  |-  <Q  C_  ( Q.  X.  Q. )
3029brel 4410 . . . . . . . . . . . . . . . . . 18  |-  ( q 
<Q  r  ->  ( q  e.  Q.  /\  r  e.  Q. ) )
3130simpld 110 . . . . . . . . . . . . . . . . 17  |-  ( q 
<Q  r  ->  q  e. 
Q. )
3231adantl 271 . . . . . . . . . . . . . . . 16  |-  ( ( A  <P  B  /\  q  <Q  r )  -> 
q  e.  Q. )
3332ad2antrr 471 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  q  e.  Q. )
34 addcomnqg 6571 . . . . . . . . . . . . . . . 16  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  =  ( g  +Q  f ) )
3534adantl 271 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A 
<P  B  /\  q  <Q  r )  /\  (
w  e.  Q.  /\  ( q  +Q  w
)  =  r ) )  /\  ( z  e.  ( 1st `  A
)  /\  y  e.  ( 2nd `  A ) ) )  /\  (
f  e.  Q.  /\  g  e.  Q. )
)  ->  ( f  +Q  g )  =  ( g  +Q  f ) )
3615, 20, 28, 33, 35caovord2d 5690 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  (
y  <Q  ( z  +Q  w )  <->  ( y  +Q  q )  <Q  (
( z  +Q  w
)  +Q  q ) ) )
37 addassnqg 6572 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  Q.  /\  w  e.  Q.  /\  q  e.  Q. )  ->  (
( z  +Q  w
)  +Q  q )  =  ( z  +Q  ( w  +Q  q
) ) )
3825, 26, 33, 37syl3anc 1169 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  (
( z  +Q  w
)  +Q  q )  =  ( z  +Q  ( w  +Q  q
) ) )
39 addcomnqg 6571 . . . . . . . . . . . . . . . . . 18  |-  ( ( w  e.  Q.  /\  q  e.  Q. )  ->  ( w  +Q  q
)  =  ( q  +Q  w ) )
4026, 33, 39syl2anc 403 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  (
w  +Q  q )  =  ( q  +Q  w ) )
4140oveq2d 5548 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  (
z  +Q  ( w  +Q  q ) )  =  ( z  +Q  ( q  +Q  w
) ) )
42 simplrr 502 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  (
q  +Q  w )  =  r )
4342oveq2d 5548 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  (
z  +Q  ( q  +Q  w ) )  =  ( z  +Q  r ) )
4438, 41, 433eqtrd 2117 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  (
( z  +Q  w
)  +Q  q )  =  ( z  +Q  r ) )
4544breq2d 3797 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  (
( y  +Q  q
)  <Q  ( ( z  +Q  w )  +Q  q )  <->  ( y  +Q  q )  <Q  (
z  +Q  r ) ) )
4636, 45bitrd 186 . . . . . . . . . . . . 13  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  (
y  <Q  ( z  +Q  w )  <->  ( y  +Q  q )  <Q  (
z  +Q  r ) ) )
4746biimpa 290 . . . . . . . . . . . 12  |-  ( ( ( ( ( A 
<P  B  /\  q  <Q  r )  /\  (
w  e.  Q.  /\  ( q  +Q  w
)  =  r ) )  /\  ( z  e.  ( 1st `  A
)  /\  y  e.  ( 2nd `  A ) ) )  /\  y  <Q  ( z  +Q  w
) )  ->  (
y  +Q  q ) 
<Q  ( z  +Q  r
) )
48 prop 6665 . . . . . . . . . . . . 13  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
49 prloc 6681 . . . . . . . . . . . . 13  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  ( y  +Q  q
)  <Q  ( z  +Q  r ) )  -> 
( ( y  +Q  q )  e.  ( 1st `  B )  \/  ( z  +Q  r )  e.  ( 2nd `  B ) ) )
5048, 49sylan 277 . . . . . . . . . . . 12  |-  ( ( B  e.  P.  /\  ( y  +Q  q
)  <Q  ( z  +Q  r ) )  -> 
( ( y  +Q  q )  e.  ( 1st `  B )  \/  ( z  +Q  r )  e.  ( 2nd `  B ) ) )
5113, 47, 50syl2anc 403 . . . . . . . . . . 11  |-  ( ( ( ( ( A 
<P  B  /\  q  <Q  r )  /\  (
w  e.  Q.  /\  ( q  +Q  w
)  =  r ) )  /\  ( z  e.  ( 1st `  A
)  /\  y  e.  ( 2nd `  A ) ) )  /\  y  <Q  ( z  +Q  w
) )  ->  (
( y  +Q  q
)  e.  ( 1st `  B )  \/  (
z  +Q  r )  e.  ( 2nd `  B
) ) )
5251ex 113 . . . . . . . . . 10  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  (
y  <Q  ( z  +Q  w )  ->  (
( y  +Q  q
)  e.  ( 1st `  B )  \/  (
z  +Q  r )  e.  ( 2nd `  B
) ) ) )
5352anassrs 392 . . . . . . . . 9  |-  ( ( ( ( ( A 
<P  B  /\  q  <Q  r )  /\  (
w  e.  Q.  /\  ( q  +Q  w
)  =  r ) )  /\  z  e.  ( 1st `  A
) )  /\  y  e.  ( 2nd `  A
) )  ->  (
y  <Q  ( z  +Q  w )  ->  (
( y  +Q  q
)  e.  ( 1st `  B )  \/  (
z  +Q  r )  e.  ( 2nd `  B
) ) ) )
5453reximdva 2463 . . . . . . . 8  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  z  e.  ( 1st `  A ) )  -> 
( E. y  e.  ( 2nd `  A
) y  <Q  (
z  +Q  w )  ->  E. y  e.  ( 2nd `  A ) ( ( y  +Q  q )  e.  ( 1st `  B )  \/  ( z  +Q  r )  e.  ( 2nd `  B ) ) ) )
5554reximdva 2463 . . . . . . 7  |-  ( ( ( A  <P  B  /\  q  <Q  r )  /\  ( w  e.  Q.  /\  ( q  +Q  w
)  =  r ) )  ->  ( E. z  e.  ( 1st `  A ) E. y  e.  ( 2nd `  A
) y  <Q  (
z  +Q  w )  ->  E. z  e.  ( 1st `  A ) E. y  e.  ( 2nd `  A ) ( ( y  +Q  q )  e.  ( 1st `  B )  \/  ( z  +Q  r )  e.  ( 2nd `  B ) ) ) )
56 prml 6667 . . . . . . . . . . . 12  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  ->  E. z  e.  Q.  z  e.  ( 1st `  A ) )
57 rexex 2410 . . . . . . . . . . . 12  |-  ( E. z  e.  Q.  z  e.  ( 1st `  A
)  ->  E. z 
z  e.  ( 1st `  A ) )
586, 56, 573syl 17 . . . . . . . . . . 11  |-  ( A  e.  P.  ->  E. z 
z  e.  ( 1st `  A ) )
59 r19.45mv 3335 . . . . . . . . . . 11  |-  ( E. z  z  e.  ( 1st `  A )  ->  ( E. z  e.  ( 1st `  A
) ( E. y  e.  ( 2nd `  A
) ( y  +Q  q )  e.  ( 1st `  B )  \/  ( z  +Q  r )  e.  ( 2nd `  B ) )  <->  ( E. y  e.  ( 2nd `  A
) ( y  +Q  q )  e.  ( 1st `  B )  \/  E. z  e.  ( 1st `  A
) ( z  +Q  r )  e.  ( 2nd `  B ) ) ) )
605, 58, 593syl 17 . . . . . . . . . 10  |-  ( A 
<P  B  ->  ( E. z  e.  ( 1st `  A ) ( E. y  e.  ( 2nd `  A ) ( y  +Q  q )  e.  ( 1st `  B
)  \/  ( z  +Q  r )  e.  ( 2nd `  B
) )  <->  ( E. y  e.  ( 2nd `  A ) ( y  +Q  q )  e.  ( 1st `  B
)  \/  E. z  e.  ( 1st `  A
) ( z  +Q  r )  e.  ( 2nd `  B ) ) ) )
6160adantr 270 . . . . . . . . 9  |-  ( ( A  <P  B  /\  q  <Q  r )  -> 
( E. z  e.  ( 1st `  A
) ( E. y  e.  ( 2nd `  A
) ( y  +Q  q )  e.  ( 1st `  B )  \/  ( z  +Q  r )  e.  ( 2nd `  B ) )  <->  ( E. y  e.  ( 2nd `  A
) ( y  +Q  q )  e.  ( 1st `  B )  \/  E. z  e.  ( 1st `  A
) ( z  +Q  r )  e.  ( 2nd `  B ) ) ) )
62 prmu 6668 . . . . . . . . . . . . 13  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  ->  E. x  e.  Q.  x  e.  ( 2nd `  A ) )
63 rexex 2410 . . . . . . . . . . . . 13  |-  ( E. x  e.  Q.  x  e.  ( 2nd `  A
)  ->  E. x  x  e.  ( 2nd `  A ) )
646, 62, 633syl 17 . . . . . . . . . . . 12  |-  ( A  e.  P.  ->  E. x  x  e.  ( 2nd `  A ) )
65 r19.9rmv 3333 . . . . . . . . . . . . . 14  |-  ( E. x  x  e.  ( 2nd `  A )  ->  ( ( z  +Q  r )  e.  ( 2nd `  B
)  <->  E. y  e.  ( 2nd `  A ) ( z  +Q  r
)  e.  ( 2nd `  B ) ) )
6665orbi2d 736 . . . . . . . . . . . . 13  |-  ( E. x  x  e.  ( 2nd `  A )  ->  ( ( E. y  e.  ( 2nd `  A ) ( y  +Q  q )  e.  ( 1st `  B
)  \/  ( z  +Q  r )  e.  ( 2nd `  B
) )  <->  ( E. y  e.  ( 2nd `  A ) ( y  +Q  q )  e.  ( 1st `  B
)  \/  E. y  e.  ( 2nd `  A
) ( z  +Q  r )  e.  ( 2nd `  B ) ) ) )
67 r19.43 2512 . . . . . . . . . . . . 13  |-  ( E. y  e.  ( 2nd `  A ) ( ( y  +Q  q )  e.  ( 1st `  B
)  \/  ( z  +Q  r )  e.  ( 2nd `  B
) )  <->  ( E. y  e.  ( 2nd `  A ) ( y  +Q  q )  e.  ( 1st `  B
)  \/  E. y  e.  ( 2nd `  A
) ( z  +Q  r )  e.  ( 2nd `  B ) ) )
6866, 67syl6rbbr 197 . . . . . . . . . . . 12  |-  ( E. x  x  e.  ( 2nd `  A )  ->  ( E. y  e.  ( 2nd `  A
) ( ( y  +Q  q )  e.  ( 1st `  B
)  \/  ( z  +Q  r )  e.  ( 2nd `  B
) )  <->  ( E. y  e.  ( 2nd `  A ) ( y  +Q  q )  e.  ( 1st `  B
)  \/  ( z  +Q  r )  e.  ( 2nd `  B
) ) ) )
695, 64, 683syl 17 . . . . . . . . . . 11  |-  ( A 
<P  B  ->  ( E. y  e.  ( 2nd `  A ) ( ( y  +Q  q )  e.  ( 1st `  B
)  \/  ( z  +Q  r )  e.  ( 2nd `  B
) )  <->  ( E. y  e.  ( 2nd `  A ) ( y  +Q  q )  e.  ( 1st `  B
)  \/  ( z  +Q  r )  e.  ( 2nd `  B
) ) ) )
7069rexbidv 2369 . . . . . . . . . 10  |-  ( A 
<P  B  ->  ( E. z  e.  ( 1st `  A ) E. y  e.  ( 2nd `  A
) ( ( y  +Q  q )  e.  ( 1st `  B
)  \/  ( z  +Q  r )  e.  ( 2nd `  B
) )  <->  E. z  e.  ( 1st `  A
) ( E. y  e.  ( 2nd `  A
) ( y  +Q  q )  e.  ( 1st `  B )  \/  ( z  +Q  r )  e.  ( 2nd `  B ) ) ) )
7170adantr 270 . . . . . . . . 9  |-  ( ( A  <P  B  /\  q  <Q  r )  -> 
( E. z  e.  ( 1st `  A
) E. y  e.  ( 2nd `  A
) ( ( y  +Q  q )  e.  ( 1st `  B
)  \/  ( z  +Q  r )  e.  ( 2nd `  B
) )  <->  E. z  e.  ( 1st `  A
) ( E. y  e.  ( 2nd `  A
) ( y  +Q  q )  e.  ( 1st `  B )  \/  ( z  +Q  r )  e.  ( 2nd `  B ) ) ) )
72 ibar 295 . . . . . . . . . . . . . . 15  |-  ( q  e.  Q.  ->  ( E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  <->  ( q  e. 
Q.  /\  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) ) )
7372adantr 270 . . . . . . . . . . . . . 14  |-  ( ( q  e.  Q.  /\  r  e.  Q. )  ->  ( E. y ( y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) )  <->  ( q  e.  Q.  /\  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) ) )
74 ibar 295 . . . . . . . . . . . . . . 15  |-  ( r  e.  Q.  ->  ( E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  r )  e.  ( 2nd `  B ) )  <->  ( r  e. 
Q.  /\  E. z
( z  e.  ( 1st `  A )  /\  ( z  +Q  r )  e.  ( 2nd `  B ) ) ) ) )
7574adantl 271 . . . . . . . . . . . . . 14  |-  ( ( q  e.  Q.  /\  r  e.  Q. )  ->  ( E. z ( z  e.  ( 1st `  A )  /\  (
z  +Q  r )  e.  ( 2nd `  B
) )  <->  ( r  e.  Q.  /\  E. z
( z  e.  ( 1st `  A )  /\  ( z  +Q  r )  e.  ( 2nd `  B ) ) ) ) )
7673, 75orbi12d 739 . . . . . . . . . . . . 13  |-  ( ( q  e.  Q.  /\  r  e.  Q. )  ->  ( ( E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  \/  E. z
( z  e.  ( 1st `  A )  /\  ( z  +Q  r )  e.  ( 2nd `  B ) ) )  <->  ( (
q  e.  Q.  /\  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) )  \/  (
r  e.  Q.  /\  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  r )  e.  ( 2nd `  B ) ) ) ) ) )
7730, 76syl 14 . . . . . . . . . . . 12  |-  ( q 
<Q  r  ->  ( ( E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  \/  E. z
( z  e.  ( 1st `  A )  /\  ( z  +Q  r )  e.  ( 2nd `  B ) ) )  <->  ( (
q  e.  Q.  /\  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) )  \/  (
r  e.  Q.  /\  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  r )  e.  ( 2nd `  B ) ) ) ) ) )
78 ltexprlem.1 . . . . . . . . . . . . . 14  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
7978ltexprlemell 6788 . . . . . . . . . . . . 13  |-  ( q  e.  ( 1st `  C
)  <->  ( q  e. 
Q.  /\  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
8078ltexprlemelu 6789 . . . . . . . . . . . . . 14  |-  ( r  e.  ( 2nd `  C
)  <->  ( r  e. 
Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )
81 eleq1 2141 . . . . . . . . . . . . . . . . 17  |-  ( y  =  z  ->  (
y  e.  ( 1st `  A )  <->  z  e.  ( 1st `  A ) ) )
82 oveq1 5539 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  z  ->  (
y  +Q  r )  =  ( z  +Q  r ) )
8382eleq1d 2147 . . . . . . . . . . . . . . . . 17  |-  ( y  =  z  ->  (
( y  +Q  r
)  e.  ( 2nd `  B )  <->  ( z  +Q  r )  e.  ( 2nd `  B ) ) )
8481, 83anbi12d 456 . . . . . . . . . . . . . . . 16  |-  ( y  =  z  ->  (
( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) )  <->  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  r )  e.  ( 2nd `  B ) ) ) )
8584cbvexv 1836 . . . . . . . . . . . . . . 15  |-  ( E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) )  <->  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  r )  e.  ( 2nd `  B ) ) )
8685anbi2i 444 . . . . . . . . . . . . . 14  |-  ( ( r  e.  Q.  /\  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) )  <->  ( r  e.  Q.  /\  E. z
( z  e.  ( 1st `  A )  /\  ( z  +Q  r )  e.  ( 2nd `  B ) ) ) )
8780, 86bitri 182 . . . . . . . . . . . . 13  |-  ( r  e.  ( 2nd `  C
)  <->  ( r  e. 
Q.  /\  E. z
( z  e.  ( 1st `  A )  /\  ( z  +Q  r )  e.  ( 2nd `  B ) ) ) )
8879, 87orbi12i 713 . . . . . . . . . . . 12  |-  ( ( q  e.  ( 1st `  C )  \/  r  e.  ( 2nd `  C
) )  <->  ( (
q  e.  Q.  /\  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) )  \/  (
r  e.  Q.  /\  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  r )  e.  ( 2nd `  B ) ) ) ) )
8977, 88syl6rbbr 197 . . . . . . . . . . 11  |-  ( q 
<Q  r  ->  ( ( q  e.  ( 1st `  C )  \/  r  e.  ( 2nd `  C
) )  <->  ( E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  \/  E. z
( z  e.  ( 1st `  A )  /\  ( z  +Q  r )  e.  ( 2nd `  B ) ) ) ) )
90 df-rex 2354 . . . . . . . . . . . 12  |-  ( E. y  e.  ( 2nd `  A ) ( y  +Q  q )  e.  ( 1st `  B
)  <->  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) )
91 df-rex 2354 . . . . . . . . . . . 12  |-  ( E. z  e.  ( 1st `  A ) ( z  +Q  r )  e.  ( 2nd `  B
)  <->  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  r )  e.  ( 2nd `  B ) ) )
9290, 91orbi12i 713 . . . . . . . . . . 11  |-  ( ( E. y  e.  ( 2nd `  A ) ( y  +Q  q
)  e.  ( 1st `  B )  \/  E. z  e.  ( 1st `  A ) ( z  +Q  r )  e.  ( 2nd `  B
) )  <->  ( E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  \/  E. z
( z  e.  ( 1st `  A )  /\  ( z  +Q  r )  e.  ( 2nd `  B ) ) ) )
9389, 92syl6bbr 196 . . . . . . . . . 10  |-  ( q 
<Q  r  ->  ( ( q  e.  ( 1st `  C )  \/  r  e.  ( 2nd `  C
) )  <->  ( E. y  e.  ( 2nd `  A ) ( y  +Q  q )  e.  ( 1st `  B
)  \/  E. z  e.  ( 1st `  A
) ( z  +Q  r )  e.  ( 2nd `  B ) ) ) )
9493adantl 271 . . . . . . . . 9  |-  ( ( A  <P  B  /\  q  <Q  r )  -> 
( ( q  e.  ( 1st `  C
)  \/  r  e.  ( 2nd `  C
) )  <->  ( E. y  e.  ( 2nd `  A ) ( y  +Q  q )  e.  ( 1st `  B
)  \/  E. z  e.  ( 1st `  A
) ( z  +Q  r )  e.  ( 2nd `  B ) ) ) )
9561, 71, 943bitr4rd 219 . . . . . . . 8  |-  ( ( A  <P  B  /\  q  <Q  r )  -> 
( ( q  e.  ( 1st `  C
)  \/  r  e.  ( 2nd `  C
) )  <->  E. z  e.  ( 1st `  A
) E. y  e.  ( 2nd `  A
) ( ( y  +Q  q )  e.  ( 1st `  B
)  \/  ( z  +Q  r )  e.  ( 2nd `  B
) ) ) )
9695adantr 270 . . . . . . 7  |-  ( ( ( A  <P  B  /\  q  <Q  r )  /\  ( w  e.  Q.  /\  ( q  +Q  w
)  =  r ) )  ->  ( (
q  e.  ( 1st `  C )  \/  r  e.  ( 2nd `  C
) )  <->  E. z  e.  ( 1st `  A
) E. y  e.  ( 2nd `  A
) ( ( y  +Q  q )  e.  ( 1st `  B
)  \/  ( z  +Q  r )  e.  ( 2nd `  B
) ) ) )
9755, 96sylibrd 167 . . . . . 6  |-  ( ( ( A  <P  B  /\  q  <Q  r )  /\  ( w  e.  Q.  /\  ( q  +Q  w
)  =  r ) )  ->  ( E. z  e.  ( 1st `  A ) E. y  e.  ( 2nd `  A
) y  <Q  (
z  +Q  w )  ->  ( q  e.  ( 1st `  C
)  \/  r  e.  ( 2nd `  C
) ) ) )
9810, 97mpd 13 . . . . 5  |-  ( ( ( A  <P  B  /\  q  <Q  r )  /\  ( w  e.  Q.  /\  ( q  +Q  w
)  =  r ) )  ->  ( q  e.  ( 1st `  C
)  \/  r  e.  ( 2nd `  C
) ) )
992, 98rexlimddv 2481 . . . 4  |-  ( ( A  <P  B  /\  q  <Q  r )  -> 
( q  e.  ( 1st `  C )  \/  r  e.  ( 2nd `  C ) ) )
10099ex 113 . . 3  |-  ( A 
<P  B  ->  ( q 
<Q  r  ->  ( q  e.  ( 1st `  C
)  \/  r  e.  ( 2nd `  C
) ) ) )
101100ralrimivw 2435 . 2  |-  ( A 
<P  B  ->  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  C
)  \/  r  e.  ( 2nd `  C
) ) ) )
102101ralrimivw 2435 1  |-  ( A 
<P  B  ->  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  C
)  \/  r  e.  ( 2nd `  C
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661    /\ w3a 919    = wceq 1284   E.wex 1421    e. wcel 1433   A.wral 2348   E.wrex 2349   {crab 2352   <.cop 3401   class class class wbr 3785   ` cfv 4922  (class class class)co 5532   1stc1st 5785   2ndc2nd 5786   Q.cnq 6470    +Q cplq 6472    <Q cltq 6475   P.cnp 6481    <P cltp 6485
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656  df-iltp 6660
This theorem is referenced by:  ltexprlempr  6798
  Copyright terms: Public domain W3C validator