ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcmgcdlem Unicode version

Theorem lcmgcdlem 10459
Description: Lemma for lcmgcd 10460 and lcmdvds 10461. Prove them for positive  M,  N, and  K. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.)
Assertion
Ref Expression
lcmgcdlem  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( M lcm 
N )  x.  ( M  gcd  N ) )  =  ( abs `  ( M  x.  N )
)  /\  ( ( K  e.  NN  /\  ( M  ||  K  /\  N  ||  K ) )  -> 
( M lcm  N ) 
||  K ) ) )

Proof of Theorem lcmgcdlem
Dummy variables  n  f  g  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnmulcl 8060 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  x.  N
)  e.  NN )
21nnred 8052 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  x.  N
)  e.  RR )
3 nnz 8370 . . . . . . 7  |-  ( M  e.  NN  ->  M  e.  ZZ )
43adantr 270 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  M  e.  ZZ )
54zred 8469 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  M  e.  RR )
6 nnz 8370 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  ZZ )
76adantl 271 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  N  e.  ZZ )
87zred 8469 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  N  e.  RR )
9 0red 7120 . . . . . . 7  |-  ( M  e.  NN  ->  0  e.  RR )
10 nnre 8046 . . . . . . 7  |-  ( M  e.  NN  ->  M  e.  RR )
11 nngt0 8064 . . . . . . 7  |-  ( M  e.  NN  ->  0  <  M )
129, 10, 11ltled 7228 . . . . . 6  |-  ( M  e.  NN  ->  0  <_  M )
1312adantr 270 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  0  <_  M )
14 0red 7120 . . . . . . 7  |-  ( N  e.  NN  ->  0  e.  RR )
15 nnre 8046 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  RR )
16 nngt0 8064 . . . . . . 7  |-  ( N  e.  NN  ->  0  <  N )
1714, 15, 16ltled 7228 . . . . . 6  |-  ( N  e.  NN  ->  0  <_  N )
1817adantl 271 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  0  <_  N )
195, 8, 13, 18mulge0d 7721 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  0  <_  ( M  x.  N ) )
202, 19absidd 10053 . . 3  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( abs `  ( M  x.  N )
)  =  ( M  x.  N ) )
213, 6anim12i 331 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
22 nnne0 8067 . . . . . . . . 9  |-  ( M  e.  NN  ->  M  =/=  0 )
2322neneqd 2266 . . . . . . . 8  |-  ( M  e.  NN  ->  -.  M  =  0 )
24 nnne0 8067 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  =/=  0 )
2524neneqd 2266 . . . . . . . 8  |-  ( N  e.  NN  ->  -.  N  =  0 )
2623, 25anim12i 331 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( -.  M  =  0  /\  -.  N  =  0 ) )
27 ioran 701 . . . . . . 7  |-  ( -.  ( M  =  0  \/  N  =  0 )  <->  ( -.  M  =  0  /\  -.  N  =  0 ) )
2826, 27sylibr 132 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  -.  ( M  =  0  \/  N  =  0 ) )
29 lcmn0val 10448 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M lcm  N
)  = inf ( { x  e.  NN  | 
( M  ||  x  /\  N  ||  x ) } ,  RR ,  <  ) )
3021, 28, 29syl2anc 403 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M lcm  N )  = inf ( { x  e.  NN  |  ( M 
||  x  /\  N  ||  x ) } ,  RR ,  <  ) )
31 lttri3 7191 . . . . . . 7  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
3231adantl 271 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( f  e.  RR  /\  g  e.  RR ) )  -> 
( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
33 gcddvds 10355 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  N ) )
3433simpld 110 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  ||  M )
35 gcdcl 10358 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  e.  NN0 )
3635nn0zd 8467 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  e.  ZZ )
37 dvdsmultr1 10233 . . . . . . . . . . . 12  |-  ( ( ( M  gcd  N
)  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  gcd  N
)  ||  M  ->  ( M  gcd  N ) 
||  ( M  x.  N ) ) )
38373expb 1139 . . . . . . . . . . 11  |-  ( ( ( M  gcd  N
)  e.  ZZ  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( ( M  gcd  N )  ||  M  ->  ( M  gcd  N )  ||  ( M  x.  N ) ) )
3936, 38mpancom 413 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  gcd  N )  ||  M  -> 
( M  gcd  N
)  ||  ( M  x.  N ) ) )
4034, 39mpd 13 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  ||  ( M  x.  N ) )
4121, 40syl 14 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  ||  ( M  x.  N ) )
42 gcdnncl 10359 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  e.  NN )
43 nndivdvds 10201 . . . . . . . . 9  |-  ( ( ( M  x.  N
)  e.  NN  /\  ( M  gcd  N )  e.  NN )  -> 
( ( M  gcd  N )  ||  ( M  x.  N )  <->  ( ( M  x.  N )  /  ( M  gcd  N ) )  e.  NN ) )
441, 42, 43syl2anc 403 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N )  ||  ( M  x.  N )  <->  ( ( M  x.  N )  /  ( M  gcd  N ) )  e.  NN ) )
4541, 44mpbid 145 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  x.  N )  /  ( M  gcd  N ) )  e.  NN )
4645nnred 8052 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  x.  N )  /  ( M  gcd  N ) )  e.  RR )
4733simprd 112 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  ||  N )
4821, 47syl 14 . . . . . . . . . . 11  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  ||  N )
4921, 36syl 14 . . . . . . . . . . . 12  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  e.  ZZ )
5042nnne0d 8083 . . . . . . . . . . . 12  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  =/=  0 )
51 dvdsval2 10198 . . . . . . . . . . . 12  |-  ( ( ( M  gcd  N
)  e.  ZZ  /\  ( M  gcd  N )  =/=  0  /\  N  e.  ZZ )  ->  (
( M  gcd  N
)  ||  N  <->  ( N  /  ( M  gcd  N ) )  e.  ZZ ) )
5249, 50, 7, 51syl3anc 1169 . . . . . . . . . . 11  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N )  ||  N  <->  ( N  /  ( M  gcd  N ) )  e.  ZZ ) )
5348, 52mpbid 145 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( N  /  ( M  gcd  N ) )  e.  ZZ )
54 dvdsmul1 10217 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  ( N  /  ( M  gcd  N ) )  e.  ZZ )  ->  M  ||  ( M  x.  ( N  /  ( M  gcd  N ) ) ) )
554, 53, 54syl2anc 403 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  M  ||  ( M  x.  ( N  / 
( M  gcd  N
) ) ) )
56 nncn 8047 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  M  e.  CC )
5756adantr 270 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  M  e.  CC )
58 nncn 8047 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  e.  CC )
5958adantl 271 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  N  e.  CC )
6042nncnd 8053 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  e.  CC )
6142nnap0d 8084 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
) #  0 )
6257, 59, 60, 61divassapd 7912 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  x.  N )  /  ( M  gcd  N ) )  =  ( M  x.  ( N  /  ( M  gcd  N ) ) ) )
6355, 62breqtrrd 3811 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  M  ||  ( ( M  x.  N )  /  ( M  gcd  N ) ) )
6421, 34syl 14 . . . . . . . . . . 11  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  ||  M )
65 dvdsval2 10198 . . . . . . . . . . . 12  |-  ( ( ( M  gcd  N
)  e.  ZZ  /\  ( M  gcd  N )  =/=  0  /\  M  e.  ZZ )  ->  (
( M  gcd  N
)  ||  M  <->  ( M  /  ( M  gcd  N ) )  e.  ZZ ) )
6649, 50, 4, 65syl3anc 1169 . . . . . . . . . . 11  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N )  ||  M  <->  ( M  /  ( M  gcd  N ) )  e.  ZZ ) )
6764, 66mpbid 145 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  /  ( M  gcd  N ) )  e.  ZZ )
68 dvdsmul1 10217 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( M  /  ( M  gcd  N ) )  e.  ZZ )  ->  N  ||  ( N  x.  ( M  /  ( M  gcd  N ) ) ) )
697, 67, 68syl2anc 403 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  N  ||  ( N  x.  ( M  / 
( M  gcd  N
) ) ) )
7057, 59mulcomd 7140 . . . . . . . . . . 11  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  x.  N
)  =  ( N  x.  M ) )
7170oveq1d 5547 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  x.  N )  /  ( M  gcd  N ) )  =  ( ( N  x.  M )  / 
( M  gcd  N
) ) )
7259, 57, 60, 61divassapd 7912 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( N  x.  M )  /  ( M  gcd  N ) )  =  ( N  x.  ( M  /  ( M  gcd  N ) ) ) )
7371, 72eqtrd 2113 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  x.  N )  /  ( M  gcd  N ) )  =  ( N  x.  ( M  /  ( M  gcd  N ) ) ) )
7469, 73breqtrrd 3811 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  N  ||  ( ( M  x.  N )  /  ( M  gcd  N ) ) )
7563, 74jca 300 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  ||  (
( M  x.  N
)  /  ( M  gcd  N ) )  /\  N  ||  (
( M  x.  N
)  /  ( M  gcd  N ) ) ) )
76 breq2 3789 . . . . . . . . 9  |-  ( x  =  ( ( M  x.  N )  / 
( M  gcd  N
) )  ->  ( M  ||  x  <->  M  ||  (
( M  x.  N
)  /  ( M  gcd  N ) ) ) )
77 breq2 3789 . . . . . . . . 9  |-  ( x  =  ( ( M  x.  N )  / 
( M  gcd  N
) )  ->  ( N  ||  x  <->  N  ||  (
( M  x.  N
)  /  ( M  gcd  N ) ) ) )
7876, 77anbi12d 456 . . . . . . . 8  |-  ( x  =  ( ( M  x.  N )  / 
( M  gcd  N
) )  ->  (
( M  ||  x  /\  N  ||  x )  <-> 
( M  ||  (
( M  x.  N
)  /  ( M  gcd  N ) )  /\  N  ||  (
( M  x.  N
)  /  ( M  gcd  N ) ) ) ) )
7978elrab 2749 . . . . . . 7  |-  ( ( ( M  x.  N
)  /  ( M  gcd  N ) )  e.  { x  e.  NN  |  ( M 
||  x  /\  N  ||  x ) }  <->  ( (
( M  x.  N
)  /  ( M  gcd  N ) )  e.  NN  /\  ( M  ||  ( ( M  x.  N )  / 
( M  gcd  N
) )  /\  N  ||  ( ( M  x.  N )  /  ( M  gcd  N ) ) ) ) )
8045, 75, 79sylanbrc 408 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  x.  N )  /  ( M  gcd  N ) )  e.  { x  e.  NN  |  ( M 
||  x  /\  N  ||  x ) } )
8146adantr 270 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  {
x  e.  NN  | 
( M  ||  x  /\  N  ||  x ) } )  ->  (
( M  x.  N
)  /  ( M  gcd  N ) )  e.  RR )
82 elrabi 2746 . . . . . . . . 9  |-  ( n  e.  { x  e.  NN  |  ( M 
||  x  /\  N  ||  x ) }  ->  n  e.  NN )
8382nnred 8052 . . . . . . . 8  |-  ( n  e.  { x  e.  NN  |  ( M 
||  x  /\  N  ||  x ) }  ->  n  e.  RR )
8483adantl 271 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  {
x  e.  NN  | 
( M  ||  x  /\  N  ||  x ) } )  ->  n  e.  RR )
85 breq2 3789 . . . . . . . . . 10  |-  ( x  =  n  ->  ( M  ||  x  <->  M  ||  n
) )
86 breq2 3789 . . . . . . . . . 10  |-  ( x  =  n  ->  ( N  ||  x  <->  N  ||  n
) )
8785, 86anbi12d 456 . . . . . . . . 9  |-  ( x  =  n  ->  (
( M  ||  x  /\  N  ||  x )  <-> 
( M  ||  n  /\  N  ||  n ) ) )
8887elrab 2749 . . . . . . . 8  |-  ( n  e.  { x  e.  NN  |  ( M 
||  x  /\  N  ||  x ) }  <->  ( n  e.  NN  /\  ( M 
||  n  /\  N  ||  n ) ) )
89 bezout 10400 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( M  gcd  N )  =  ( ( M  x.  x )  +  ( N  x.  y ) ) )
9021, 89syl 14 . . . . . . . . . . . 12  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( M  gcd  N )  =  ( ( M  x.  x )  +  ( N  x.  y ) ) )
9190adantr 270 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( n  e.  NN  /\  ( M 
||  n  /\  N  ||  n ) ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( M  gcd  N )  =  ( ( M  x.  x )  +  ( N  x.  y ) ) )
92 nncn 8047 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  e.  NN  ->  n  e.  CC )
9392ad2antlr 472 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  n  e.  CC )
941nncnd 8053 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  x.  N
)  e.  CC )
9594ad2antrr 471 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( M  x.  N )  e.  CC )
9660ad2antrr 471 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( M  gcd  N )  e.  CC )
9757ad2antrr 471 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  M  e.  CC )
9858ad3antlr 476 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  N  e.  CC )
99 simplll 499 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  M  e.  NN )
10099nnap0d 8084 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  M #  0
)
101 simpllr 500 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  N  e.  NN )
102101nnap0d 8084 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  N #  0
)
10397, 98, 100, 102mulap0d 7748 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( M  x.  N ) #  0 )
10461ad2antrr 471 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( M  gcd  N ) #  0 )
10593, 95, 96, 103, 104divdivap2d 7909 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( n  /  ( ( M  x.  N )  / 
( M  gcd  N
) ) )  =  ( ( n  x.  ( M  gcd  N
) )  /  ( M  x.  N )
) )
106105adantr 270 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( M  gcd  N )  =  ( ( M  x.  x
)  +  ( N  x.  y ) ) )  ->  ( n  /  ( ( M  x.  N )  / 
( M  gcd  N
) ) )  =  ( ( n  x.  ( M  gcd  N
) )  /  ( M  x.  N )
) )
107 oveq2 5540 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( M  gcd  N )  =  ( ( M  x.  x )  +  ( N  x.  y
) )  ->  (
n  x.  ( M  gcd  N ) )  =  ( n  x.  ( ( M  x.  x )  +  ( N  x.  y ) ) ) )
108107oveq1d 5547 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( M  gcd  N )  =  ( ( M  x.  x )  +  ( N  x.  y
) )  ->  (
( n  x.  ( M  gcd  N ) )  /  ( M  x.  N ) )  =  ( ( n  x.  ( ( M  x.  x )  +  ( N  x.  y ) ) )  /  ( M  x.  N )
) )
109 zcn 8356 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( x  e.  ZZ  ->  x  e.  CC )
110109ad2antrl 473 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  x  e.  CC )
11197, 110mulcld 7139 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( M  x.  x )  e.  CC )
112 zcn 8356 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( y  e.  ZZ  ->  y  e.  CC )
113112ad2antll 474 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  y  e.  CC )
11498, 113mulcld 7139 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( N  x.  y )  e.  CC )
11593, 111, 114adddid 7143 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( n  x.  ( ( M  x.  x )  +  ( N  x.  y ) ) )  =  ( ( n  x.  ( M  x.  x )
)  +  ( n  x.  ( N  x.  y ) ) ) )
116115oveq1d 5547 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (
n  x.  ( ( M  x.  x )  +  ( N  x.  y ) ) )  /  ( M  x.  N ) )  =  ( ( ( n  x.  ( M  x.  x ) )  +  ( n  x.  ( N  x.  y )
) )  /  ( M  x.  N )
) )
11793, 111mulcld 7139 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( n  x.  ( M  x.  x
) )  e.  CC )
11893, 114mulcld 7139 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( n  x.  ( N  x.  y
) )  e.  CC )
119117, 118, 95, 103divdirapd 7915 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (
( n  x.  ( M  x.  x )
)  +  ( n  x.  ( N  x.  y ) ) )  /  ( M  x.  N ) )  =  ( ( ( n  x.  ( M  x.  x ) )  / 
( M  x.  N
) )  +  ( ( n  x.  ( N  x.  y )
)  /  ( M  x.  N ) ) ) )
120116, 119eqtrd 2113 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (
n  x.  ( ( M  x.  x )  +  ( N  x.  y ) ) )  /  ( M  x.  N ) )  =  ( ( ( n  x.  ( M  x.  x ) )  / 
( M  x.  N
) )  +  ( ( n  x.  ( N  x.  y )
)  /  ( M  x.  N ) ) ) )
121108, 120sylan9eqr 2135 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( M  gcd  N )  =  ( ( M  x.  x
)  +  ( N  x.  y ) ) )  ->  ( (
n  x.  ( M  gcd  N ) )  /  ( M  x.  N ) )  =  ( ( ( n  x.  ( M  x.  x ) )  / 
( M  x.  N
) )  +  ( ( n  x.  ( N  x.  y )
)  /  ( M  x.  N ) ) ) )
12293, 97, 110mul12d 7260 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( n  x.  ( M  x.  x
) )  =  ( M  x.  ( n  x.  x ) ) )
123122oveq1d 5547 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (
n  x.  ( M  x.  x ) )  /  ( M  x.  N ) )  =  ( ( M  x.  ( n  x.  x
) )  /  ( M  x.  N )
) )
12493, 110mulcld 7139 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( n  x.  x )  e.  CC )
125124, 98, 97, 102, 100divcanap5d 7903 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( ( M  x.  ( n  x.  x ) )  / 
( M  x.  N
) )  =  ( ( n  x.  x
)  /  N ) )
126123, 125eqtrd 2113 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (
n  x.  ( M  x.  x ) )  /  ( M  x.  N ) )  =  ( ( n  x.  x )  /  N
) )
12793, 98, 113mul12d 7260 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( n  x.  ( N  x.  y
) )  =  ( N  x.  ( n  x.  y ) ) )
128127oveq1d 5547 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (
n  x.  ( N  x.  y ) )  /  ( M  x.  N ) )  =  ( ( N  x.  ( n  x.  y
) )  /  ( M  x.  N )
) )
12970ad2antrr 471 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( M  x.  N )  =  ( N  x.  M ) )
130129oveq2d 5548 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( ( N  x.  ( n  x.  y ) )  / 
( M  x.  N
) )  =  ( ( N  x.  (
n  x.  y ) )  /  ( N  x.  M ) ) )
13193, 113mulcld 7139 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( n  x.  y )  e.  CC )
132131, 97, 98, 100, 102divcanap5d 7903 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( ( N  x.  ( n  x.  y ) )  / 
( N  x.  M
) )  =  ( ( n  x.  y
)  /  M ) )
133128, 130, 1323eqtrd 2117 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (
n  x.  ( N  x.  y ) )  /  ( M  x.  N ) )  =  ( ( n  x.  y )  /  M
) )
134126, 133oveq12d 5550 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (
( n  x.  ( M  x.  x )
)  /  ( M  x.  N ) )  +  ( ( n  x.  ( N  x.  y ) )  / 
( M  x.  N
) ) )  =  ( ( ( n  x.  x )  /  N )  +  ( ( n  x.  y
)  /  M ) ) )
135134adantr 270 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( M  gcd  N )  =  ( ( M  x.  x
)  +  ( N  x.  y ) ) )  ->  ( (
( n  x.  ( M  x.  x )
)  /  ( M  x.  N ) )  +  ( ( n  x.  ( N  x.  y ) )  / 
( M  x.  N
) ) )  =  ( ( ( n  x.  x )  /  N )  +  ( ( n  x.  y
)  /  M ) ) )
136106, 121, 1353eqtrd 2117 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( M  gcd  N )  =  ( ( M  x.  x
)  +  ( N  x.  y ) ) )  ->  ( n  /  ( ( M  x.  N )  / 
( M  gcd  N
) ) )  =  ( ( ( n  x.  x )  /  N )  +  ( ( n  x.  y
)  /  M ) ) )
137136ex 113 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( ( M  gcd  N )  =  ( ( M  x.  x )  +  ( N  x.  y ) )  ->  ( n  /  ( ( M  x.  N )  / 
( M  gcd  N
) ) )  =  ( ( ( n  x.  x )  /  N )  +  ( ( n  x.  y
)  /  M ) ) ) )
138137adantlrr 466 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  (
n  e.  NN  /\  ( M  ||  n  /\  N  ||  n ) ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( ( M  gcd  N )  =  ( ( M  x.  x )  +  ( N  x.  y ) )  -> 
( n  /  (
( M  x.  N
)  /  ( M  gcd  N ) ) )  =  ( ( ( n  x.  x
)  /  N )  +  ( ( n  x.  y )  /  M ) ) ) )
139138imp 122 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  (
n  e.  NN  /\  ( M  ||  n  /\  N  ||  n ) ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( M  gcd  N )  =  ( ( M  x.  x )  +  ( N  x.  y
) ) )  -> 
( n  /  (
( M  x.  N
)  /  ( M  gcd  N ) ) )  =  ( ( ( n  x.  x
)  /  N )  +  ( ( n  x.  y )  /  M ) ) )
1406ad3antlr 476 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  N  e.  ZZ )
141 nnz 8370 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( n  e.  NN  ->  n  e.  ZZ )
142141ad2antlr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  n  e.  ZZ )
143 simprl 497 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  x  e.  ZZ )
144 dvdsmultr1 10233 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ  /\  x  e.  ZZ )  ->  ( N  ||  n  ->  N  ||  ( n  x.  x
) ) )
145140, 142, 143, 144syl3anc 1169 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( N  ||  n  ->  N  ||  (
n  x.  x ) ) )
14624ad3antlr 476 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  N  =/=  0 )
147142, 143zmulcld 8475 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( n  x.  x )  e.  ZZ )
148 dvdsval2 10198 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( N  e.  ZZ  /\  N  =/=  0  /\  (
n  x.  x )  e.  ZZ )  -> 
( N  ||  (
n  x.  x )  <-> 
( ( n  x.  x )  /  N
)  e.  ZZ ) )
149140, 146, 147, 148syl3anc 1169 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( N  ||  ( n  x.  x
)  <->  ( ( n  x.  x )  /  N )  e.  ZZ ) )
150145, 149sylibd 147 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( N  ||  n  ->  ( (
n  x.  x )  /  N )  e.  ZZ ) )
151150adantld 272 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( ( M  ||  n  /\  N  ||  n )  ->  (
( n  x.  x
)  /  N )  e.  ZZ ) )
1521513impia 1135 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )  /\  ( M  ||  n  /\  N  ||  n ) )  ->  ( (
n  x.  x )  /  N )  e.  ZZ )
1533ad3antrrr 475 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  M  e.  ZZ )
154 simprr 498 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  y  e.  ZZ )
155 dvdsmultr1 10233 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( M  e.  ZZ  /\  n  e.  ZZ  /\  y  e.  ZZ )  ->  ( M  ||  n  ->  M  ||  ( n  x.  y
) ) )
156153, 142, 154, 155syl3anc 1169 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( M  ||  n  ->  M  ||  (
n  x.  y ) ) )
15722ad3antrrr 475 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  M  =/=  0 )
158142, 154zmulcld 8475 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( n  x.  y )  e.  ZZ )
159 dvdsval2 10198 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  (
n  x.  y )  e.  ZZ )  -> 
( M  ||  (
n  x.  y )  <-> 
( ( n  x.  y )  /  M
)  e.  ZZ ) )
160153, 157, 158, 159syl3anc 1169 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( M  ||  ( n  x.  y
)  <->  ( ( n  x.  y )  /  M )  e.  ZZ ) )
161156, 160sylibd 147 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( M  ||  n  ->  ( (
n  x.  y )  /  M )  e.  ZZ ) )
162161adantrd 273 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( ( M  ||  n  /\  N  ||  n )  ->  (
( n  x.  y
)  /  M )  e.  ZZ ) )
1631623impia 1135 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )  /\  ( M  ||  n  /\  N  ||  n ) )  ->  ( (
n  x.  y )  /  M )  e.  ZZ )
164152, 163zaddcld 8473 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )  /\  ( M  ||  n  /\  N  ||  n ) )  ->  ( (
( n  x.  x
)  /  N )  +  ( ( n  x.  y )  /  M ) )  e.  ZZ )
1651643expia 1140 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( ( M  ||  n  /\  N  ||  n )  ->  (
( ( n  x.  x )  /  N
)  +  ( ( n  x.  y )  /  M ) )  e.  ZZ ) )
166165an32s 532 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  n  e.  NN )  ->  ( ( M  ||  n  /\  N  ||  n )  -> 
( ( ( n  x.  x )  /  N )  +  ( ( n  x.  y
)  /  M ) )  e.  ZZ ) )
167166impr 371 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( n  e.  NN  /\  ( M 
||  n  /\  N  ||  n ) ) )  ->  ( ( ( n  x.  x )  /  N )  +  ( ( n  x.  y )  /  M
) )  e.  ZZ )
168167an32s 532 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  (
n  e.  NN  /\  ( M  ||  n  /\  N  ||  n ) ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( ( ( n  x.  x )  /  N )  +  ( ( n  x.  y
)  /  M ) )  e.  ZZ )
169168adantr 270 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  (
n  e.  NN  /\  ( M  ||  n  /\  N  ||  n ) ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( M  gcd  N )  =  ( ( M  x.  x )  +  ( N  x.  y
) ) )  -> 
( ( ( n  x.  x )  /  N )  +  ( ( n  x.  y
)  /  M ) )  e.  ZZ )
170139, 169eqeltrd 2155 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  (
n  e.  NN  /\  ( M  ||  n  /\  N  ||  n ) ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( M  gcd  N )  =  ( ( M  x.  x )  +  ( N  x.  y
) ) )  -> 
( n  /  (
( M  x.  N
)  /  ( M  gcd  N ) ) )  e.  ZZ )
17145nnzd 8468 . . . . . . . . . . . . . . . . . . 19  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  x.  N )  /  ( M  gcd  N ) )  e.  ZZ )
172171ad2antrr 471 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  (
n  e.  NN  /\  ( M  ||  n  /\  N  ||  n ) ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( ( M  x.  N )  /  ( M  gcd  N ) )  e.  ZZ )
17345nnne0d 8083 . . . . . . . . . . . . . . . . . . 19  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  x.  N )  /  ( M  gcd  N ) )  =/=  0 )
174173ad2antrr 471 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  (
n  e.  NN  /\  ( M  ||  n  /\  N  ||  n ) ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( ( M  x.  N )  /  ( M  gcd  N ) )  =/=  0 )
175142adantlrr 466 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  (
n  e.  NN  /\  ( M  ||  n  /\  N  ||  n ) ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  n  e.  ZZ )
176 dvdsval2 10198 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( M  x.  N )  /  ( M  gcd  N ) )  e.  ZZ  /\  (
( M  x.  N
)  /  ( M  gcd  N ) )  =/=  0  /\  n  e.  ZZ )  ->  (
( ( M  x.  N )  /  ( M  gcd  N ) ) 
||  n  <->  ( n  /  ( ( M  x.  N )  / 
( M  gcd  N
) ) )  e.  ZZ ) )
177172, 174, 175, 176syl3anc 1169 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  (
n  e.  NN  /\  ( M  ||  n  /\  N  ||  n ) ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( ( ( M  x.  N )  / 
( M  gcd  N
) )  ||  n  <->  ( n  /  ( ( M  x.  N )  /  ( M  gcd  N ) ) )  e.  ZZ ) )
178177adantr 270 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  (
n  e.  NN  /\  ( M  ||  n  /\  N  ||  n ) ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( M  gcd  N )  =  ( ( M  x.  x )  +  ( N  x.  y
) ) )  -> 
( ( ( M  x.  N )  / 
( M  gcd  N
) )  ||  n  <->  ( n  /  ( ( M  x.  N )  /  ( M  gcd  N ) ) )  e.  ZZ ) )
179170, 178mpbird 165 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  (
n  e.  NN  /\  ( M  ||  n  /\  N  ||  n ) ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( M  gcd  N )  =  ( ( M  x.  x )  +  ( N  x.  y
) ) )  -> 
( ( M  x.  N )  /  ( M  gcd  N ) ) 
||  n )
180179ex 113 . . . . . . . . . . . . . 14  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  (
n  e.  NN  /\  ( M  ||  n  /\  N  ||  n ) ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( ( M  gcd  N )  =  ( ( M  x.  x )  +  ( N  x.  y ) )  -> 
( ( M  x.  N )  /  ( M  gcd  N ) ) 
||  n ) )
181180anassrs 392 . . . . . . . . . . . . 13  |-  ( ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  (
n  e.  NN  /\  ( M  ||  n  /\  N  ||  n ) ) )  /\  x  e.  ZZ )  /\  y  e.  ZZ )  ->  (
( M  gcd  N
)  =  ( ( M  x.  x )  +  ( N  x.  y ) )  -> 
( ( M  x.  N )  /  ( M  gcd  N ) ) 
||  n ) )
182181reximdva 2463 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  (
n  e.  NN  /\  ( M  ||  n  /\  N  ||  n ) ) )  /\  x  e.  ZZ )  ->  ( E. y  e.  ZZ  ( M  gcd  N )  =  ( ( M  x.  x )  +  ( N  x.  y
) )  ->  E. y  e.  ZZ  ( ( M  x.  N )  / 
( M  gcd  N
) )  ||  n
) )
183182reximdva 2463 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( n  e.  NN  /\  ( M 
||  n  /\  N  ||  n ) ) )  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  ( M  gcd  N )  =  ( ( M  x.  x )  +  ( N  x.  y ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  (
( M  x.  N
)  /  ( M  gcd  N ) ) 
||  n ) )
18491, 183mpd 13 . . . . . . . . . 10  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( n  e.  NN  /\  ( M 
||  n  /\  N  ||  n ) ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  (
( M  x.  N
)  /  ( M  gcd  N ) ) 
||  n )
185 1z 8377 . . . . . . . . . . . 12  |-  1  e.  ZZ
186 elex2 2615 . . . . . . . . . . . 12  |-  ( 1  e.  ZZ  ->  E. w  w  e.  ZZ )
187 r19.9rmv 3333 . . . . . . . . . . . 12  |-  ( E. w  w  e.  ZZ  ->  ( ( ( M  x.  N )  / 
( M  gcd  N
) )  ||  n  <->  E. y  e.  ZZ  (
( M  x.  N
)  /  ( M  gcd  N ) ) 
||  n ) )
188185, 186, 187mp2b 8 . . . . . . . . . . 11  |-  ( ( ( M  x.  N
)  /  ( M  gcd  N ) ) 
||  n  <->  E. y  e.  ZZ  ( ( M  x.  N )  / 
( M  gcd  N
) )  ||  n
)
189 r19.9rmv 3333 . . . . . . . . . . . 12  |-  ( E. w  w  e.  ZZ  ->  ( E. y  e.  ZZ  ( ( M  x.  N )  / 
( M  gcd  N
) )  ||  n  <->  E. x  e.  ZZ  E. y  e.  ZZ  (
( M  x.  N
)  /  ( M  gcd  N ) ) 
||  n ) )
190185, 186, 189mp2b 8 . . . . . . . . . . 11  |-  ( E. y  e.  ZZ  (
( M  x.  N
)  /  ( M  gcd  N ) ) 
||  n  <->  E. x  e.  ZZ  E. y  e.  ZZ  ( ( M  x.  N )  / 
( M  gcd  N
) )  ||  n
)
191188, 190bitri 182 . . . . . . . . . 10  |-  ( ( ( M  x.  N
)  /  ( M  gcd  N ) ) 
||  n  <->  E. x  e.  ZZ  E. y  e.  ZZ  ( ( M  x.  N )  / 
( M  gcd  N
) )  ||  n
)
192184, 191sylibr 132 . . . . . . . . 9  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( n  e.  NN  /\  ( M 
||  n  /\  N  ||  n ) ) )  ->  ( ( M  x.  N )  / 
( M  gcd  N
) )  ||  n
)
193171adantr 270 . . . . . . . . . 10  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( n  e.  NN  /\  ( M 
||  n  /\  N  ||  n ) ) )  ->  ( ( M  x.  N )  / 
( M  gcd  N
) )  e.  ZZ )
194 simprl 497 . . . . . . . . . 10  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( n  e.  NN  /\  ( M 
||  n  /\  N  ||  n ) ) )  ->  n  e.  NN )
195 dvdsle 10244 . . . . . . . . . 10  |-  ( ( ( ( M  x.  N )  /  ( M  gcd  N ) )  e.  ZZ  /\  n  e.  NN )  ->  (
( ( M  x.  N )  /  ( M  gcd  N ) ) 
||  n  ->  (
( M  x.  N
)  /  ( M  gcd  N ) )  <_  n ) )
196193, 194, 195syl2anc 403 . . . . . . . . 9  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( n  e.  NN  /\  ( M 
||  n  /\  N  ||  n ) ) )  ->  ( ( ( M  x.  N )  /  ( M  gcd  N ) )  ||  n  ->  ( ( M  x.  N )  /  ( M  gcd  N ) )  <_  n ) )
197192, 196mpd 13 . . . . . . . 8  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( n  e.  NN  /\  ( M 
||  n  /\  N  ||  n ) ) )  ->  ( ( M  x.  N )  / 
( M  gcd  N
) )  <_  n
)
19888, 197sylan2b 281 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  {
x  e.  NN  | 
( M  ||  x  /\  N  ||  x ) } )  ->  (
( M  x.  N
)  /  ( M  gcd  N ) )  <_  n )
19981, 84, 198lensymd 7231 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  n  e.  {
x  e.  NN  | 
( M  ||  x  /\  N  ||  x ) } )  ->  -.  n  <  ( ( M  x.  N )  / 
( M  gcd  N
) ) )
20032, 46, 80, 199infminti 6440 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  -> inf ( { x  e.  NN  |  ( M 
||  x  /\  N  ||  x ) } ,  RR ,  <  )  =  ( ( M  x.  N )  /  ( M  gcd  N ) ) )
20130, 200eqtr2d 2114 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  x.  N )  /  ( M  gcd  N ) )  =  ( M lcm  N
) )
202201, 45eqeltrrd 2156 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M lcm  N )  e.  NN )
203202nncnd 8053 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M lcm  N )  e.  CC )
20494, 203, 60, 61divmulap3d 7911 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( M  x.  N )  / 
( M  gcd  N
) )  =  ( M lcm  N )  <->  ( M  x.  N )  =  ( ( M lcm  N )  x.  ( M  gcd  N ) ) ) )
205201, 204mpbid 145 . . 3  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  x.  N
)  =  ( ( M lcm  N )  x.  ( M  gcd  N
) ) )
20620, 205eqtr2d 2114 . 2  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M lcm  N
)  x.  ( M  gcd  N ) )  =  ( abs `  ( M  x.  N )
) )
207 simprl 497 . . . 4  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( K  e.  NN  /\  ( M 
||  K  /\  N  ||  K ) ) )  ->  K  e.  NN )
208 eleq1 2141 . . . . . . . 8  |-  ( n  =  K  ->  (
n  e.  NN  <->  K  e.  NN ) )
209 breq2 3789 . . . . . . . . 9  |-  ( n  =  K  ->  ( M  ||  n  <->  M  ||  K
) )
210 breq2 3789 . . . . . . . . 9  |-  ( n  =  K  ->  ( N  ||  n  <->  N  ||  K
) )
211209, 210anbi12d 456 . . . . . . . 8  |-  ( n  =  K  ->  (
( M  ||  n  /\  N  ||  n )  <-> 
( M  ||  K  /\  N  ||  K ) ) )
212208, 211anbi12d 456 . . . . . . 7  |-  ( n  =  K  ->  (
( n  e.  NN  /\  ( M  ||  n  /\  N  ||  n ) )  <->  ( K  e.  NN  /\  ( M 
||  K  /\  N  ||  K ) ) ) )
213212anbi2d 451 . . . . . 6  |-  ( n  =  K  ->  (
( ( M  e.  NN  /\  N  e.  NN )  /\  (
n  e.  NN  /\  ( M  ||  n  /\  N  ||  n ) ) )  <->  ( ( M  e.  NN  /\  N  e.  NN )  /\  ( K  e.  NN  /\  ( M  ||  K  /\  N  ||  K ) ) ) ) )
214 breq2 3789 . . . . . 6  |-  ( n  =  K  ->  (
( M lcm  N ) 
||  n  <->  ( M lcm  N )  ||  K ) )
215213, 214imbi12d 232 . . . . 5  |-  ( n  =  K  ->  (
( ( ( M  e.  NN  /\  N  e.  NN )  /\  (
n  e.  NN  /\  ( M  ||  n  /\  N  ||  n ) ) )  ->  ( M lcm  N )  ||  n )  <-> 
( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( K  e.  NN  /\  ( M  ||  K  /\  N  ||  K ) ) )  ->  ( M lcm  N
)  ||  K )
) )
216201breq1d 3795 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( M  x.  N )  / 
( M  gcd  N
) )  ||  n  <->  ( M lcm  N )  ||  n ) )
217216adantr 270 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( n  e.  NN  /\  ( M 
||  n  /\  N  ||  n ) ) )  ->  ( ( ( M  x.  N )  /  ( M  gcd  N ) )  ||  n  <->  ( M lcm  N )  ||  n ) )
218192, 217mpbid 145 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( n  e.  NN  /\  ( M 
||  n  /\  N  ||  n ) ) )  ->  ( M lcm  N
)  ||  n )
219215, 218vtoclg 2658 . . . 4  |-  ( K  e.  NN  ->  (
( ( M  e.  NN  /\  N  e.  NN )  /\  ( K  e.  NN  /\  ( M  ||  K  /\  N  ||  K ) ) )  ->  ( M lcm  N
)  ||  K )
)
220207, 219mpcom 36 . . 3  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( K  e.  NN  /\  ( M 
||  K  /\  N  ||  K ) ) )  ->  ( M lcm  N
)  ||  K )
221220ex 113 . 2  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( K  e.  NN  /\  ( M 
||  K  /\  N  ||  K ) )  -> 
( M lcm  N ) 
||  K ) )
222206, 221jca 300 1  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( M lcm 
N )  x.  ( M  gcd  N ) )  =  ( abs `  ( M  x.  N )
)  /\  ( ( K  e.  NN  /\  ( M  ||  K  /\  N  ||  K ) )  -> 
( M lcm  N ) 
||  K ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661    /\ w3a 919    = wceq 1284   E.wex 1421    e. wcel 1433    =/= wne 2245   E.wrex 2349   {crab 2352   class class class wbr 3785   ` cfv 4922  (class class class)co 5532  infcinf 6396   CCcc 6979   RRcr 6980   0cc0 6981   1c1 6982    + caddc 6984    x. cmul 6986    < clt 7153    <_ cle 7154   # cap 7681    / cdiv 7760   NNcn 8039   ZZcz 8351   abscabs 9883    || cdvds 10195    gcd cgcd 10338   lcm clcm 10442
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095  ax-caucvg 7096
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-isom 4931  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-sup 6397  df-inf 6398  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-n0 8289  df-z 8352  df-uz 8620  df-q 8705  df-rp 8735  df-fz 9030  df-fzo 9153  df-fl 9274  df-mod 9325  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885  df-dvds 10196  df-gcd 10339  df-lcm 10443
This theorem is referenced by:  lcmgcd  10460  lcmdvds  10461
  Copyright terms: Public domain W3C validator