ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r2exf Unicode version

Theorem r2exf 2384
Description: Double restricted existential quantification. (Contributed by Mario Carneiro, 14-Oct-2016.)
Hypothesis
Ref Expression
r2alf.1  |-  F/_ y A
Assertion
Ref Expression
r2exf  |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. x E. y ( ( x  e.  A  /\  y  e.  B )  /\  ph ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    A( x, y)    B( x, y)

Proof of Theorem r2exf
StepHypRef Expression
1 df-rex 2354 . 2  |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. x
( x  e.  A  /\  E. y  e.  B  ph ) )
2 r2alf.1 . . . . . 6  |-  F/_ y A
32nfcri 2213 . . . . 5  |-  F/ y  x  e.  A
4319.42 1618 . . . 4  |-  ( E. y ( x  e.  A  /\  ( y  e.  B  /\  ph ) )  <->  ( x  e.  A  /\  E. y
( y  e.  B  /\  ph ) ) )
5 anass 393 . . . . 5  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  ph )  <->  ( x  e.  A  /\  (
y  e.  B  /\  ph ) ) )
65exbii 1536 . . . 4  |-  ( E. y ( ( x  e.  A  /\  y  e.  B )  /\  ph ) 
<->  E. y ( x  e.  A  /\  (
y  e.  B  /\  ph ) ) )
7 df-rex 2354 . . . . 5  |-  ( E. y  e.  B  ph  <->  E. y ( y  e.  B  /\  ph )
)
87anbi2i 444 . . . 4  |-  ( ( x  e.  A  /\  E. y  e.  B  ph ) 
<->  ( x  e.  A  /\  E. y ( y  e.  B  /\  ph ) ) )
94, 6, 83bitr4i 210 . . 3  |-  ( E. y ( ( x  e.  A  /\  y  e.  B )  /\  ph ) 
<->  ( x  e.  A  /\  E. y  e.  B  ph ) )
109exbii 1536 . 2  |-  ( E. x E. y ( ( x  e.  A  /\  y  e.  B
)  /\  ph )  <->  E. x
( x  e.  A  /\  E. y  e.  B  ph ) )
111, 10bitr4i 185 1  |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. x E. y ( ( x  e.  A  /\  y  e.  B )  /\  ph ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103   E.wex 1421    e. wcel 1433   F/_wnfc 2206   E.wrex 2349
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354
This theorem is referenced by:  r2ex  2386  rexcomf  2516
  Copyright terms: Public domain W3C validator