| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexcomf | Unicode version | ||
| Description: Commutation of restricted quantifiers. (Contributed by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| ralcomf.1 |
|
| ralcomf.2 |
|
| Ref | Expression |
|---|---|
| rexcomf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 262 |
. . . . 5
| |
| 2 | 1 | anbi1i 445 |
. . . 4
|
| 3 | 2 | 2exbii 1537 |
. . 3
|
| 4 | excom 1594 |
. . 3
| |
| 5 | 3, 4 | bitri 182 |
. 2
|
| 6 | ralcomf.1 |
. . 3
| |
| 7 | 6 | r2exf 2384 |
. 2
|
| 8 | ralcomf.2 |
. . 3
| |
| 9 | 8 | r2exf 2384 |
. 2
|
| 10 | 5, 7, 9 | 3bitr4i 210 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 |
| This theorem is referenced by: rexcom 2518 |
| Copyright terms: Public domain | W3C validator |