ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgisuc1 Unicode version

Theorem rdgisuc1 5994
Description: One way of describing the value of the recursive definition generator at a successor. There is no condition on the characteristic function  F other than  F  Fn  _V. Given that, the resulting expression encompasses both the expected successor term  ( F `  ( rec ( F ,  A ) `  B
) ) but also terms that correspond to the initial value  A and to limit ordinals  U_ x  e.  B ( F `  ( rec ( F ,  A ) `  x
) ).

If we add conditions on the characteristic function, we can show tighter results such as rdgisucinc 5995. (Contributed by Jim Kingdon, 9-Jun-2019.)

Hypotheses
Ref Expression
rdgisuc1.1  |-  ( ph  ->  F  Fn  _V )
rdgisuc1.2  |-  ( ph  ->  A  e.  V )
rdgisuc1.3  |-  ( ph  ->  B  e.  On )
Assertion
Ref Expression
rdgisuc1  |-  ( ph  ->  ( rec ( F ,  A ) `  suc  B )  =  ( A  u.  ( U_ x  e.  B  ( F `  ( rec ( F ,  A ) `
 x ) )  u.  ( F `  ( rec ( F ,  A ) `  B
) ) ) ) )
Distinct variable groups:    x, F    x, A    x, B    x, V
Allowed substitution hint:    ph( x)

Proof of Theorem rdgisuc1
StepHypRef Expression
1 rdgisuc1.1 . . 3  |-  ( ph  ->  F  Fn  _V )
2 rdgisuc1.2 . . 3  |-  ( ph  ->  A  e.  V )
3 rdgisuc1.3 . . . 4  |-  ( ph  ->  B  e.  On )
4 suceloni 4245 . . . 4  |-  ( B  e.  On  ->  suc  B  e.  On )
53, 4syl 14 . . 3  |-  ( ph  ->  suc  B  e.  On )
6 rdgival 5992 . . 3  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  suc  B  e.  On )  ->  ( rec ( F ,  A ) `  suc  B )  =  ( A  u.  U_ x  e.  suc  B ( F `  ( rec ( F ,  A
) `  x )
) ) )
71, 2, 5, 6syl3anc 1169 . 2  |-  ( ph  ->  ( rec ( F ,  A ) `  suc  B )  =  ( A  u.  U_ x  e.  suc  B ( F `
 ( rec ( F ,  A ) `  x ) ) ) )
8 df-suc 4126 . . . . . . 7  |-  suc  B  =  ( B  u.  { B } )
9 iuneq1 3691 . . . . . . 7  |-  ( suc 
B  =  ( B  u.  { B }
)  ->  U_ x  e. 
suc  B ( F `
 ( rec ( F ,  A ) `  x ) )  = 
U_ x  e.  ( B  u.  { B } ) ( F `
 ( rec ( F ,  A ) `  x ) ) )
108, 9ax-mp 7 . . . . . 6  |-  U_ x  e.  suc  B ( F `
 ( rec ( F ,  A ) `  x ) )  = 
U_ x  e.  ( B  u.  { B } ) ( F `
 ( rec ( F ,  A ) `  x ) )
11 iunxun 3756 . . . . . 6  |-  U_ x  e.  ( B  u.  { B } ) ( F `
 ( rec ( F ,  A ) `  x ) )  =  ( U_ x  e.  B  ( F `  ( rec ( F ,  A ) `  x
) )  u.  U_ x  e.  { B }  ( F `  ( rec ( F ,  A ) `  x
) ) )
1210, 11eqtri 2101 . . . . 5  |-  U_ x  e.  suc  B ( F `
 ( rec ( F ,  A ) `  x ) )  =  ( U_ x  e.  B  ( F `  ( rec ( F ,  A ) `  x
) )  u.  U_ x  e.  { B }  ( F `  ( rec ( F ,  A ) `  x
) ) )
13 fveq2 5198 . . . . . . . 8  |-  ( x  =  B  ->  ( rec ( F ,  A
) `  x )  =  ( rec ( F ,  A ) `  B ) )
1413fveq2d 5202 . . . . . . 7  |-  ( x  =  B  ->  ( F `  ( rec ( F ,  A ) `
 x ) )  =  ( F `  ( rec ( F ,  A ) `  B
) ) )
1514iunxsng 3753 . . . . . 6  |-  ( B  e.  On  ->  U_ x  e.  { B }  ( F `  ( rec ( F ,  A ) `
 x ) )  =  ( F `  ( rec ( F ,  A ) `  B
) ) )
1615uneq2d 3126 . . . . 5  |-  ( B  e.  On  ->  ( U_ x  e.  B  ( F `  ( rec ( F ,  A
) `  x )
)  u.  U_ x  e.  { B }  ( F `  ( rec ( F ,  A ) `
 x ) ) )  =  ( U_ x  e.  B  ( F `  ( rec ( F ,  A ) `
 x ) )  u.  ( F `  ( rec ( F ,  A ) `  B
) ) ) )
1712, 16syl5eq 2125 . . . 4  |-  ( B  e.  On  ->  U_ x  e.  suc  B ( F `
 ( rec ( F ,  A ) `  x ) )  =  ( U_ x  e.  B  ( F `  ( rec ( F ,  A ) `  x
) )  u.  ( F `  ( rec ( F ,  A ) `
 B ) ) ) )
1817uneq2d 3126 . . 3  |-  ( B  e.  On  ->  ( A  u.  U_ x  e. 
suc  B ( F `
 ( rec ( F ,  A ) `  x ) ) )  =  ( A  u.  ( U_ x  e.  B  ( F `  ( rec ( F ,  A
) `  x )
)  u.  ( F `
 ( rec ( F ,  A ) `  B ) ) ) ) )
193, 18syl 14 . 2  |-  ( ph  ->  ( A  u.  U_ x  e.  suc  B ( F `  ( rec ( F ,  A
) `  x )
) )  =  ( A  u.  ( U_ x  e.  B  ( F `  ( rec ( F ,  A ) `
 x ) )  u.  ( F `  ( rec ( F ,  A ) `  B
) ) ) ) )
207, 19eqtrd 2113 1  |-  ( ph  ->  ( rec ( F ,  A ) `  suc  B )  =  ( A  u.  ( U_ x  e.  B  ( F `  ( rec ( F ,  A ) `
 x ) )  u.  ( F `  ( rec ( F ,  A ) `  B
) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1284    e. wcel 1433   _Vcvv 2601    u. cun 2971   {csn 3398   U_ciun 3678   Oncon0 4118   suc csuc 4120    Fn wfn 4917   ` cfv 4922   reccrdg 5979
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-recs 5943  df-irdg 5980
This theorem is referenced by:  rdgisucinc  5995
  Copyright terms: Public domain W3C validator