ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgss Unicode version

Theorem rdgss 5993
Description: Subset and recursive definition generator. (Contributed by Jim Kingdon, 15-Jul-2019.)
Hypotheses
Ref Expression
rdgss.1  |-  ( ph  ->  F  Fn  _V )
rdgss.2  |-  ( ph  ->  I  e.  V )
rdgss.3  |-  ( ph  ->  A  e.  On )
rdgss.4  |-  ( ph  ->  B  e.  On )
rdgss.5  |-  ( ph  ->  A  C_  B )
Assertion
Ref Expression
rdgss  |-  ( ph  ->  ( rec ( F ,  I ) `  A )  C_  ( rec ( F ,  I
) `  B )
)

Proof of Theorem rdgss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rdgss.5 . . . 4  |-  ( ph  ->  A  C_  B )
2 ssel 2993 . . . . . 6  |-  ( A 
C_  B  ->  (
x  e.  A  ->  x  e.  B )
)
3 ssid 3018 . . . . . . 7  |-  ( F `
 ( rec ( F ,  I ) `  x ) )  C_  ( F `  ( rec ( F ,  I
) `  x )
)
4 fveq2 5198 . . . . . . . . . 10  |-  ( y  =  x  ->  ( rec ( F ,  I
) `  y )  =  ( rec ( F ,  I ) `  x ) )
54fveq2d 5202 . . . . . . . . 9  |-  ( y  =  x  ->  ( F `  ( rec ( F ,  I ) `
 y ) )  =  ( F `  ( rec ( F ,  I ) `  x
) ) )
65sseq2d 3027 . . . . . . . 8  |-  ( y  =  x  ->  (
( F `  ( rec ( F ,  I
) `  x )
)  C_  ( F `  ( rec ( F ,  I ) `  y ) )  <->  ( F `  ( rec ( F ,  I ) `  x ) )  C_  ( F `  ( rec ( F ,  I
) `  x )
) ) )
76rspcev 2701 . . . . . . 7  |-  ( ( x  e.  B  /\  ( F `  ( rec ( F ,  I
) `  x )
)  C_  ( F `  ( rec ( F ,  I ) `  x ) ) )  ->  E. y  e.  B  ( F `  ( rec ( F ,  I
) `  x )
)  C_  ( F `  ( rec ( F ,  I ) `  y ) ) )
83, 7mpan2 415 . . . . . 6  |-  ( x  e.  B  ->  E. y  e.  B  ( F `  ( rec ( F ,  I ) `  x ) )  C_  ( F `  ( rec ( F ,  I
) `  y )
) )
92, 8syl6 33 . . . . 5  |-  ( A 
C_  B  ->  (
x  e.  A  ->  E. y  e.  B  ( F `  ( rec ( F ,  I
) `  x )
)  C_  ( F `  ( rec ( F ,  I ) `  y ) ) ) )
109ralrimiv 2433 . . . 4  |-  ( A 
C_  B  ->  A. x  e.  A  E. y  e.  B  ( F `  ( rec ( F ,  I ) `  x ) )  C_  ( F `  ( rec ( F ,  I
) `  y )
) )
111, 10syl 14 . . 3  |-  ( ph  ->  A. x  e.  A  E. y  e.  B  ( F `  ( rec ( F ,  I
) `  x )
)  C_  ( F `  ( rec ( F ,  I ) `  y ) ) )
12 iunss2 3723 . . 3  |-  ( A. x  e.  A  E. y  e.  B  ( F `  ( rec ( F ,  I ) `
 x ) ) 
C_  ( F `  ( rec ( F ,  I ) `  y
) )  ->  U_ x  e.  A  ( F `  ( rec ( F ,  I ) `  x ) )  C_  U_ y  e.  B  ( F `  ( rec ( F ,  I
) `  y )
) )
13 unss2 3143 . . 3  |-  ( U_ x  e.  A  ( F `  ( rec ( F ,  I ) `
 x ) ) 
C_  U_ y  e.  B  ( F `  ( rec ( F ,  I
) `  y )
)  ->  ( I  u.  U_ x  e.  A  ( F `  ( rec ( F ,  I
) `  x )
) )  C_  (
I  u.  U_ y  e.  B  ( F `  ( rec ( F ,  I ) `  y ) ) ) )
1411, 12, 133syl 17 . 2  |-  ( ph  ->  ( I  u.  U_ x  e.  A  ( F `  ( rec ( F ,  I ) `
 x ) ) )  C_  ( I  u.  U_ y  e.  B  ( F `  ( rec ( F ,  I
) `  y )
) ) )
15 rdgss.1 . . 3  |-  ( ph  ->  F  Fn  _V )
16 rdgss.2 . . 3  |-  ( ph  ->  I  e.  V )
17 rdgss.3 . . 3  |-  ( ph  ->  A  e.  On )
18 rdgival 5992 . . 3  |-  ( ( F  Fn  _V  /\  I  e.  V  /\  A  e.  On )  ->  ( rec ( F ,  I ) `  A )  =  ( I  u.  U_ x  e.  A  ( F `  ( rec ( F ,  I ) `  x ) ) ) )
1915, 16, 17, 18syl3anc 1169 . 2  |-  ( ph  ->  ( rec ( F ,  I ) `  A )  =  ( I  u.  U_ x  e.  A  ( F `  ( rec ( F ,  I ) `  x ) ) ) )
20 rdgss.4 . . 3  |-  ( ph  ->  B  e.  On )
21 rdgival 5992 . . 3  |-  ( ( F  Fn  _V  /\  I  e.  V  /\  B  e.  On )  ->  ( rec ( F ,  I ) `  B )  =  ( I  u.  U_ y  e.  B  ( F `  ( rec ( F ,  I ) `  y ) ) ) )
2215, 16, 20, 21syl3anc 1169 . 2  |-  ( ph  ->  ( rec ( F ,  I ) `  B )  =  ( I  u.  U_ y  e.  B  ( F `  ( rec ( F ,  I ) `  y ) ) ) )
2314, 19, 223sstr4d 3042 1  |-  ( ph  ->  ( rec ( F ,  I ) `  A )  C_  ( rec ( F ,  I
) `  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1284    e. wcel 1433   A.wral 2348   E.wrex 2349   _Vcvv 2601    u. cun 2971    C_ wss 2973   U_ciun 3678   Oncon0 4118    Fn wfn 4917   ` cfv 4922   reccrdg 5979
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-recs 5943  df-irdg 5980
This theorem is referenced by:  oawordi  6072
  Copyright terms: Public domain W3C validator