ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reapti Unicode version

Theorem reapti 7679
Description: Real apartness is tight. Beyond the development of apartness itself, proofs should use apti 7722. (Contributed by Jim Kingdon, 30-Jan-2020.) (New usage is discouraged.)
Assertion
Ref Expression
reapti  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  <->  -.  A #  B ) )

Proof of Theorem reapti
StepHypRef Expression
1 ltnr 7188 . . . . 5  |-  ( A  e.  RR  ->  -.  A  <  A )
21adantr 270 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  -.  A  <  A
)
3 oridm 706 . . . . . 6  |-  ( ( A  <  A  \/  A  <  A )  <->  A  <  A )
4 breq2 3789 . . . . . . 7  |-  ( A  =  B  ->  ( A  <  A  <->  A  <  B ) )
5 breq1 3788 . . . . . . 7  |-  ( A  =  B  ->  ( A  <  A  <->  B  <  A ) )
64, 5orbi12d 739 . . . . . 6  |-  ( A  =  B  ->  (
( A  <  A  \/  A  <  A )  <-> 
( A  <  B  \/  B  <  A ) ) )
73, 6syl5bbr 192 . . . . 5  |-  ( A  =  B  ->  ( A  <  A  <->  ( A  <  B  \/  B  < 
A ) ) )
87notbid 624 . . . 4  |-  ( A  =  B  ->  ( -.  A  <  A  <->  -.  ( A  <  B  \/  B  <  A ) ) )
92, 8syl5ibcom 153 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  ->  -.  ( A  <  B  \/  B  < 
A ) ) )
10 reapval 7676 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  ( A  < 
B  \/  B  < 
A ) ) )
1110notbid 624 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -.  A #  B  <->  -.  ( A  <  B  \/  B  <  A ) ) )
129, 11sylibrd 167 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  ->  -.  A #  B )
)
13 axapti 7183 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  -.  ( A  <  B  \/  B  <  A ) )  ->  A  =  B )
14133expia 1140 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -.  ( A  <  B  \/  B  <  A )  ->  A  =  B ) )
1511, 14sylbid 148 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -.  A #  B  ->  A  =  B )
)
1612, 15impbid 127 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  <->  -.  A #  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661    = wceq 1284    e. wcel 1433   class class class wbr 3785   RRcr 6980    < clt 7153   # creap 7674
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-pre-ltirr 7088  ax-pre-apti 7091
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-xp 4369  df-pnf 7155  df-mnf 7156  df-ltxr 7158  df-reap 7675
This theorem is referenced by:  rimul  7685  apreap  7687  apti  7722
  Copyright terms: Public domain W3C validator