ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relcnvfi Unicode version

Theorem relcnvfi 6391
Description: If a relation is finite, its converse is as well. (Contributed by Jim Kingdon, 5-Feb-2022.)
Assertion
Ref Expression
relcnvfi  |-  ( ( Rel  A  /\  A  e.  Fin )  ->  `' A  e.  Fin )

Proof of Theorem relcnvfi
StepHypRef Expression
1 dfrel2 4791 . . . . 5  |-  ( Rel 
A  <->  `' `' A  =  A
)
21biimpi 118 . . . 4  |-  ( Rel 
A  ->  `' `' A  =  A )
32adantr 270 . . 3  |-  ( ( Rel  A  /\  A  e.  Fin )  ->  `' `' A  =  A
)
4 simpr 108 . . 3  |-  ( ( Rel  A  /\  A  e.  Fin )  ->  A  e.  Fin )
53, 4eqeltrd 2155 . 2  |-  ( ( Rel  A  /\  A  e.  Fin )  ->  `' `' A  e.  Fin )
6 relcnv 4723 . . . 4  |-  Rel  `' A
7 cnvexg 4875 . . . 4  |-  ( A  e.  Fin  ->  `' A  e.  _V )
8 cnven 6311 . . . 4  |-  ( ( Rel  `' A  /\  `' A  e.  _V )  ->  `' A  ~~  `' `' A )
96, 7, 8sylancr 405 . . 3  |-  ( A  e.  Fin  ->  `' A  ~~  `' `' A
)
109adantl 271 . 2  |-  ( ( Rel  A  /\  A  e.  Fin )  ->  `' A  ~~  `' `' A
)
11 enfii 6359 . 2  |-  ( ( `' `' A  e.  Fin  /\  `' A  ~~  `' `' A )  ->  `' A  e.  Fin )
125, 10, 11syl2anc 403 1  |-  ( ( Rel  A  /\  A  e.  Fin )  ->  `' A  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433   _Vcvv 2601   class class class wbr 3785   `'ccnv 4362   Rel wrel 4368    ~~ cen 6242   Fincfn 6244
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-1st 5787  df-2nd 5788  df-er 6129  df-en 6245  df-fin 6247
This theorem is referenced by:  funrnfi  6392
  Copyright terms: Public domain W3C validator