ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvexg Unicode version

Theorem cnvexg 4875
Description: The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 17-Mar-1998.)
Assertion
Ref Expression
cnvexg  |-  ( A  e.  V  ->  `' A  e.  _V )

Proof of Theorem cnvexg
StepHypRef Expression
1 relcnv 4723 . . 3  |-  Rel  `' A
2 relssdmrn 4861 . . 3  |-  ( Rel  `' A  ->  `' A  C_  ( dom  `' A  X.  ran  `' A ) )
31, 2ax-mp 7 . 2  |-  `' A  C_  ( dom  `' A  X.  ran  `' A )
4 df-rn 4374 . . . 4  |-  ran  A  =  dom  `' A
5 rnexg 4615 . . . 4  |-  ( A  e.  V  ->  ran  A  e.  _V )
64, 5syl5eqelr 2166 . . 3  |-  ( A  e.  V  ->  dom  `' A  e.  _V )
7 dfdm4 4545 . . . 4  |-  dom  A  =  ran  `' A
8 dmexg 4614 . . . 4  |-  ( A  e.  V  ->  dom  A  e.  _V )
97, 8syl5eqelr 2166 . . 3  |-  ( A  e.  V  ->  ran  `' A  e.  _V )
10 xpexg 4470 . . 3  |-  ( ( dom  `' A  e. 
_V  /\  ran  `' A  e.  _V )  ->  ( dom  `' A  X.  ran  `' A )  e.  _V )
116, 9, 10syl2anc 403 . 2  |-  ( A  e.  V  ->  ( dom  `' A  X.  ran  `' A )  e.  _V )
12 ssexg 3917 . 2  |-  ( ( `' A  C_  ( dom  `' A  X.  ran  `' A )  /\  ( dom  `' A  X.  ran  `' A )  e.  _V )  ->  `' A  e. 
_V )
133, 11, 12sylancr 405 1  |-  ( A  e.  V  ->  `' A  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1433   _Vcvv 2601    C_ wss 2973    X. cxp 4361   `'ccnv 4362   dom cdm 4363   ran crn 4364   Rel wrel 4368
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-xp 4369  df-rel 4370  df-cnv 4371  df-dm 4373  df-rn 4374
This theorem is referenced by:  cnvex  4876  relcnvexb  4877  cofunex2g  5759  cnvf1o  5866  brtpos2  5889  tposexg  5896  cnven  6311  fopwdom  6333  relcnvfi  6391
  Copyright terms: Public domain W3C validator