ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reseq1d Unicode version

Theorem reseq1d 4629
Description: Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.)
Hypothesis
Ref Expression
reseqd.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
reseq1d  |-  ( ph  ->  ( A  |`  C )  =  ( B  |`  C ) )

Proof of Theorem reseq1d
StepHypRef Expression
1 reseqd.1 . 2  |-  ( ph  ->  A  =  B )
2 reseq1 4624 . 2  |-  ( A  =  B  ->  ( A  |`  C )  =  ( B  |`  C ) )
31, 2syl 14 1  |-  ( ph  ->  ( A  |`  C )  =  ( B  |`  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1284    |` cres 4365
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-in 2979  df-res 4375
This theorem is referenced by:  reseq12d  4631  fun2ssres  4963  funcnvres2  4994  funimaexg  5003  fresin  5088  offres  5782  tfrlemisucaccv  5962  tfrlemi1  5969  freceq1  6002  freceq2  6003  fseq1p1m1  9111
  Copyright terms: Public domain W3C validator