| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fseq1p1m1 | Unicode version | ||
| Description: Add/remove an item to/from the end of a finite sequence. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 7-Mar-2014.) |
| Ref | Expression |
|---|---|
| fseq1p1m1.1 |
|
| Ref | Expression |
|---|---|
| fseq1p1m1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr1 944 |
. . . . . 6
| |
| 2 | nn0p1nn 8327 |
. . . . . . . . 9
| |
| 3 | 2 | adantr 270 |
. . . . . . . 8
|
| 4 | simpr2 945 |
. . . . . . . 8
| |
| 5 | fseq1p1m1.1 |
. . . . . . . . 9
| |
| 6 | fsng 5357 |
. . . . . . . . 9
| |
| 7 | 5, 6 | mpbiri 166 |
. . . . . . . 8
|
| 8 | 3, 4, 7 | syl2anc 403 |
. . . . . . 7
|
| 9 | 4 | snssd 3530 |
. . . . . . 7
|
| 10 | 8, 9 | fssd 5075 |
. . . . . 6
|
| 11 | fzp1disj 9097 |
. . . . . . 7
| |
| 12 | 11 | a1i 9 |
. . . . . 6
|
| 13 | fun2 5084 |
. . . . . 6
| |
| 14 | 1, 10, 12, 13 | syl21anc 1168 |
. . . . 5
|
| 15 | 1z 8377 |
. . . . . . . 8
| |
| 16 | simpl 107 |
. . . . . . . . 9
| |
| 17 | nn0uz 8653 |
. . . . . . . . . 10
| |
| 18 | 1m1e0 8108 |
. . . . . . . . . . 11
| |
| 19 | 18 | fveq2i 5201 |
. . . . . . . . . 10
|
| 20 | 17, 19 | eqtr4i 2104 |
. . . . . . . . 9
|
| 21 | 16, 20 | syl6eleq 2171 |
. . . . . . . 8
|
| 22 | fzsuc2 9096 |
. . . . . . . 8
| |
| 23 | 15, 21, 22 | sylancr 405 |
. . . . . . 7
|
| 24 | 23 | eqcomd 2086 |
. . . . . 6
|
| 25 | 24 | feq2d 5055 |
. . . . 5
|
| 26 | 14, 25 | mpbid 145 |
. . . 4
|
| 27 | simpr3 946 |
. . . . 5
| |
| 28 | 27 | feq1d 5054 |
. . . 4
|
| 29 | 26, 28 | mpbird 165 |
. . 3
|
| 30 | 27 | reseq1d 4629 |
. . . . . 6
|
| 31 | ffn 5066 |
. . . . . . . . . 10
| |
| 32 | fnresdisj 5029 |
. . . . . . . . . 10
| |
| 33 | 1, 31, 32 | 3syl 17 |
. . . . . . . . 9
|
| 34 | 12, 33 | mpbid 145 |
. . . . . . . 8
|
| 35 | 34 | uneq1d 3125 |
. . . . . . 7
|
| 36 | resundir 4644 |
. . . . . . 7
| |
| 37 | uncom 3116 |
. . . . . . . 8
| |
| 38 | un0 3278 |
. . . . . . . 8
| |
| 39 | 37, 38 | eqtr2i 2102 |
. . . . . . 7
|
| 40 | 35, 36, 39 | 3eqtr4g 2138 |
. . . . . 6
|
| 41 | ffn 5066 |
. . . . . . 7
| |
| 42 | fnresdm 5028 |
. . . . . . 7
| |
| 43 | 10, 41, 42 | 3syl 17 |
. . . . . 6
|
| 44 | 30, 40, 43 | 3eqtrd 2117 |
. . . . 5
|
| 45 | 44 | fveq1d 5200 |
. . . 4
|
| 46 | 16 | nn0zd 8467 |
. . . . . 6
|
| 47 | 46 | peano2zd 8472 |
. . . . 5
|
| 48 | snidg 3423 |
. . . . 5
| |
| 49 | fvres 5219 |
. . . . 5
| |
| 50 | 47, 48, 49 | 3syl 17 |
. . . 4
|
| 51 | 5 | fveq1i 5199 |
. . . . . 6
|
| 52 | fvsng 5380 |
. . . . . 6
| |
| 53 | 51, 52 | syl5eq 2125 |
. . . . 5
|
| 54 | 3, 4, 53 | syl2anc 403 |
. . . 4
|
| 55 | 45, 50, 54 | 3eqtr3d 2121 |
. . 3
|
| 56 | 27 | reseq1d 4629 |
. . . 4
|
| 57 | incom 3158 |
. . . . . . . 8
| |
| 58 | 57, 12 | syl5eq 2125 |
. . . . . . 7
|
| 59 | ffn 5066 |
. . . . . . . 8
| |
| 60 | fnresdisj 5029 |
. . . . . . . 8
| |
| 61 | 8, 59, 60 | 3syl 17 |
. . . . . . 7
|
| 62 | 58, 61 | mpbid 145 |
. . . . . 6
|
| 63 | 62 | uneq2d 3126 |
. . . . 5
|
| 64 | resundir 4644 |
. . . . 5
| |
| 65 | un0 3278 |
. . . . . 6
| |
| 66 | 65 | eqcomi 2085 |
. . . . 5
|
| 67 | 63, 64, 66 | 3eqtr4g 2138 |
. . . 4
|
| 68 | fnresdm 5028 |
. . . . 5
| |
| 69 | 1, 31, 68 | 3syl 17 |
. . . 4
|
| 70 | 56, 67, 69 | 3eqtrrd 2118 |
. . 3
|
| 71 | 29, 55, 70 | 3jca 1118 |
. 2
|
| 72 | simpr1 944 |
. . . . 5
| |
| 73 | fzssp1 9085 |
. . . . 5
| |
| 74 | fssres 5086 |
. . . . 5
| |
| 75 | 72, 73, 74 | sylancl 404 |
. . . 4
|
| 76 | simpr3 946 |
. . . . 5
| |
| 77 | 76 | feq1d 5054 |
. . . 4
|
| 78 | 75, 77 | mpbird 165 |
. . 3
|
| 79 | simpr2 945 |
. . . 4
| |
| 80 | 2 | adantr 270 |
. . . . . . 7
|
| 81 | nnuz 8654 |
. . . . . . 7
| |
| 82 | 80, 81 | syl6eleq 2171 |
. . . . . 6
|
| 83 | eluzfz2 9051 |
. . . . . 6
| |
| 84 | 82, 83 | syl 14 |
. . . . 5
|
| 85 | 72, 84 | ffvelrnd 5324 |
. . . 4
|
| 86 | 79, 85 | eqeltrrd 2156 |
. . 3
|
| 87 | ffn 5066 |
. . . . . . . . 9
| |
| 88 | 72, 87 | syl 14 |
. . . . . . . 8
|
| 89 | fnressn 5370 |
. . . . . . . 8
| |
| 90 | 88, 84, 89 | syl2anc 403 |
. . . . . . 7
|
| 91 | opeq2 3571 |
. . . . . . . . 9
| |
| 92 | 91 | sneqd 3411 |
. . . . . . . 8
|
| 93 | 79, 92 | syl 14 |
. . . . . . 7
|
| 94 | 90, 93 | eqtrd 2113 |
. . . . . 6
|
| 95 | 94, 5 | syl6reqr 2132 |
. . . . 5
|
| 96 | 76, 95 | uneq12d 3127 |
. . . 4
|
| 97 | simpl 107 |
. . . . . . . 8
| |
| 98 | 97, 20 | syl6eleq 2171 |
. . . . . . 7
|
| 99 | 15, 98, 22 | sylancr 405 |
. . . . . 6
|
| 100 | 99 | reseq2d 4630 |
. . . . 5
|
| 101 | resundi 4643 |
. . . . 5
| |
| 102 | 100, 101 | syl6req 2130 |
. . . 4
|
| 103 | fnresdm 5028 |
. . . . 5
| |
| 104 | 72, 87, 103 | 3syl 17 |
. . . 4
|
| 105 | 96, 102, 104 | 3eqtrrd 2118 |
. . 3
|
| 106 | 78, 86, 105 | 3jca 1118 |
. 2
|
| 107 | 71, 106 | impbida 560 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-addass 7078 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 |
| This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-inn 8040 df-n0 8289 df-z 8352 df-uz 8620 df-fz 9030 |
| This theorem is referenced by: fseq1m1p1 9112 |
| Copyright terms: Public domain | W3C validator |