| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfrlemisucaccv | Unicode version | ||
| Description: We can extend an acceptable function by one element to produce an acceptable function. Lemma for tfrlemi1 5969. (Contributed by Jim Kingdon, 4-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
| Ref | Expression |
|---|---|
| tfrlemisucfn.1 |
|
| tfrlemisucfn.2 |
|
| tfrlemisucfn.3 |
|
| tfrlemisucfn.4 |
|
| tfrlemisucfn.5 |
|
| Ref | Expression |
|---|---|
| tfrlemisucaccv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlemisucfn.3 |
. . . 4
| |
| 2 | suceloni 4245 |
. . . 4
| |
| 3 | 1, 2 | syl 14 |
. . 3
|
| 4 | tfrlemisucfn.1 |
. . . 4
| |
| 5 | tfrlemisucfn.2 |
. . . 4
| |
| 6 | tfrlemisucfn.4 |
. . . 4
| |
| 7 | tfrlemisucfn.5 |
. . . 4
| |
| 8 | 4, 5, 1, 6, 7 | tfrlemisucfn 5961 |
. . 3
|
| 9 | vex 2604 |
. . . . . 6
| |
| 10 | 9 | elsuc 4161 |
. . . . 5
|
| 11 | vex 2604 |
. . . . . . . . . . 11
| |
| 12 | 4, 11 | tfrlem3a 5948 |
. . . . . . . . . 10
|
| 13 | 7, 12 | sylib 120 |
. . . . . . . . 9
|
| 14 | simprrr 506 |
. . . . . . . . . 10
| |
| 15 | simprrl 505 |
. . . . . . . . . . . 12
| |
| 16 | 6 | adantr 270 |
. . . . . . . . . . . 12
|
| 17 | fndmu 5020 |
. . . . . . . . . . . 12
| |
| 18 | 15, 16, 17 | syl2anc 403 |
. . . . . . . . . . 11
|
| 19 | 18 | raleqdv 2555 |
. . . . . . . . . 10
|
| 20 | 14, 19 | mpbid 145 |
. . . . . . . . 9
|
| 21 | 13, 20 | rexlimddv 2481 |
. . . . . . . 8
|
| 22 | 21 | r19.21bi 2449 |
. . . . . . 7
|
| 23 | elirrv 4291 |
. . . . . . . . . . 11
| |
| 24 | elequ2 1641 |
. . . . . . . . . . 11
| |
| 25 | 23, 24 | mtbiri 632 |
. . . . . . . . . 10
|
| 26 | 25 | necon2ai 2299 |
. . . . . . . . 9
|
| 27 | 26 | adantl 271 |
. . . . . . . 8
|
| 28 | fvunsng 5378 |
. . . . . . . 8
| |
| 29 | 9, 27, 28 | sylancr 405 |
. . . . . . 7
|
| 30 | eloni 4130 |
. . . . . . . . . . . 12
| |
| 31 | 1, 30 | syl 14 |
. . . . . . . . . . 11
|
| 32 | ordelss 4134 |
. . . . . . . . . . 11
| |
| 33 | 31, 32 | sylan 277 |
. . . . . . . . . 10
|
| 34 | resabs1 4658 |
. . . . . . . . . 10
| |
| 35 | 33, 34 | syl 14 |
. . . . . . . . 9
|
| 36 | elirrv 4291 |
. . . . . . . . . . . 12
| |
| 37 | fsnunres 5385 |
. . . . . . . . . . . 12
| |
| 38 | 6, 36, 37 | sylancl 404 |
. . . . . . . . . . 11
|
| 39 | 38 | reseq1d 4629 |
. . . . . . . . . 10
|
| 40 | 39 | adantr 270 |
. . . . . . . . 9
|
| 41 | 35, 40 | eqtr3d 2115 |
. . . . . . . 8
|
| 42 | 41 | fveq2d 5202 |
. . . . . . 7
|
| 43 | 22, 29, 42 | 3eqtr4d 2123 |
. . . . . 6
|
| 44 | 5 | tfrlem3-2d 5951 |
. . . . . . . . . 10
|
| 45 | 44 | simprd 112 |
. . . . . . . . 9
|
| 46 | fndm 5018 |
. . . . . . . . . . . 12
| |
| 47 | 6, 46 | syl 14 |
. . . . . . . . . . 11
|
| 48 | 47 | eleq2d 2148 |
. . . . . . . . . 10
|
| 49 | 36, 48 | mtbiri 632 |
. . . . . . . . 9
|
| 50 | fsnunfv 5384 |
. . . . . . . . 9
| |
| 51 | 1, 45, 49, 50 | syl3anc 1169 |
. . . . . . . 8
|
| 52 | 51 | adantr 270 |
. . . . . . 7
|
| 53 | simpr 108 |
. . . . . . . 8
| |
| 54 | 53 | fveq2d 5202 |
. . . . . . 7
|
| 55 | reseq2 4625 |
. . . . . . . . 9
| |
| 56 | 55, 38 | sylan9eqr 2135 |
. . . . . . . 8
|
| 57 | 56 | fveq2d 5202 |
. . . . . . 7
|
| 58 | 52, 54, 57 | 3eqtr4d 2123 |
. . . . . 6
|
| 59 | 43, 58 | jaodan 743 |
. . . . 5
|
| 60 | 10, 59 | sylan2b 281 |
. . . 4
|
| 61 | 60 | ralrimiva 2434 |
. . 3
|
| 62 | fneq2 5008 |
. . . . 5
| |
| 63 | raleq 2549 |
. . . . 5
| |
| 64 | 62, 63 | anbi12d 456 |
. . . 4
|
| 65 | 64 | rspcev 2701 |
. . 3
|
| 66 | 3, 8, 61, 65 | syl12anc 1167 |
. 2
|
| 67 | vex 2604 |
. . . . . 6
| |
| 68 | opexg 3983 |
. . . . . 6
| |
| 69 | 67, 45, 68 | sylancr 405 |
. . . . 5
|
| 70 | snexg 3956 |
. . . . 5
| |
| 71 | 69, 70 | syl 14 |
. . . 4
|
| 72 | unexg 4196 |
. . . 4
| |
| 73 | 11, 71, 72 | sylancr 405 |
. . 3
|
| 74 | 4 | tfrlem3ag 5947 |
. . 3
|
| 75 | 73, 74 | syl 14 |
. 2
|
| 76 | 66, 75 | mpbird 165 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-tr 3876 df-id 4048 df-iord 4121 df-on 4123 df-suc 4126 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-res 4375 df-iota 4887 df-fun 4924 df-fn 4925 df-fv 4930 |
| This theorem is referenced by: tfrlemibacc 5963 tfrlemi14d 5970 |
| Copyright terms: Public domain | W3C validator |