ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  offres Unicode version

Theorem offres 5782
Description: Pointwise combination commutes with restriction. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
offres  |-  ( ( F  e.  V  /\  G  e.  W )  ->  ( ( F  oF R G )  |`  D )  =  ( ( F  |`  D )  oF R ( G  |`  D )
) )

Proof of Theorem offres
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 inss2 3187 . . . . . 6  |-  ( ( dom  F  i^i  dom  G )  i^i  D ) 
C_  D
21sseli 2995 . . . . 5  |-  ( x  e.  ( ( dom 
F  i^i  dom  G )  i^i  D )  ->  x  e.  D )
3 fvres 5219 . . . . . 6  |-  ( x  e.  D  ->  (
( F  |`  D ) `
 x )  =  ( F `  x
) )
4 fvres 5219 . . . . . 6  |-  ( x  e.  D  ->  (
( G  |`  D ) `
 x )  =  ( G `  x
) )
53, 4oveq12d 5550 . . . . 5  |-  ( x  e.  D  ->  (
( ( F  |`  D ) `  x
) R ( ( G  |`  D ) `  x ) )  =  ( ( F `  x ) R ( G `  x ) ) )
62, 5syl 14 . . . 4  |-  ( x  e.  ( ( dom 
F  i^i  dom  G )  i^i  D )  -> 
( ( ( F  |`  D ) `  x
) R ( ( G  |`  D ) `  x ) )  =  ( ( F `  x ) R ( G `  x ) ) )
76mpteq2ia 3864 . . 3  |-  ( x  e.  ( ( dom 
F  i^i  dom  G )  i^i  D )  |->  ( ( ( F  |`  D ) `  x
) R ( ( G  |`  D ) `  x ) ) )  =  ( x  e.  ( ( dom  F  i^i  dom  G )  i^i 
D )  |->  ( ( F `  x ) R ( G `  x ) ) )
8 inindi 3183 . . . . 5  |-  ( D  i^i  ( dom  F  i^i  dom  G ) )  =  ( ( D  i^i  dom  F )  i^i  ( D  i^i  dom  G ) )
9 incom 3158 . . . . 5  |-  ( ( dom  F  i^i  dom  G )  i^i  D )  =  ( D  i^i  ( dom  F  i^i  dom  G ) )
10 dmres 4650 . . . . . 6  |-  dom  ( F  |`  D )  =  ( D  i^i  dom  F )
11 dmres 4650 . . . . . 6  |-  dom  ( G  |`  D )  =  ( D  i^i  dom  G )
1210, 11ineq12i 3165 . . . . 5  |-  ( dom  ( F  |`  D )  i^i  dom  ( G  |`  D ) )  =  ( ( D  i^i  dom 
F )  i^i  ( D  i^i  dom  G )
)
138, 9, 123eqtr4ri 2112 . . . 4  |-  ( dom  ( F  |`  D )  i^i  dom  ( G  |`  D ) )  =  ( ( dom  F  i^i  dom  G )  i^i 
D )
14 eqid 2081 . . . 4  |-  ( ( ( F  |`  D ) `
 x ) R ( ( G  |`  D ) `  x
) )  =  ( ( ( F  |`  D ) `  x
) R ( ( G  |`  D ) `  x ) )
1513, 14mpteq12i 3866 . . 3  |-  ( x  e.  ( dom  ( F  |`  D )  i^i 
dom  ( G  |`  D ) )  |->  ( ( ( F  |`  D ) `  x
) R ( ( G  |`  D ) `  x ) ) )  =  ( x  e.  ( ( dom  F  i^i  dom  G )  i^i 
D )  |->  ( ( ( F  |`  D ) `
 x ) R ( ( G  |`  D ) `  x
) ) )
16 resmpt3 4677 . . 3  |-  ( ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( ( F `  x ) R ( G `  x ) ) )  |`  D )  =  ( x  e.  ( ( dom  F  i^i  dom  G )  i^i 
D )  |->  ( ( F `  x ) R ( G `  x ) ) )
177, 15, 163eqtr4ri 2112 . 2  |-  ( ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( ( F `  x ) R ( G `  x ) ) )  |`  D )  =  ( x  e.  ( dom  ( F  |`  D )  i^i  dom  ( G  |`  D ) )  |->  ( ( ( F  |`  D ) `  x ) R ( ( G  |`  D ) `
 x ) ) )
18 offval3 5781 . . 3  |-  ( ( F  e.  V  /\  G  e.  W )  ->  ( F  oF R G )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x ) R ( G `  x
) ) ) )
1918reseq1d 4629 . 2  |-  ( ( F  e.  V  /\  G  e.  W )  ->  ( ( F  oF R G )  |`  D )  =  ( ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x ) R ( G `  x
) ) )  |`  D ) )
20 resexg 4668 . . 3  |-  ( F  e.  V  ->  ( F  |`  D )  e. 
_V )
21 resexg 4668 . . 3  |-  ( G  e.  W  ->  ( G  |`  D )  e. 
_V )
22 offval3 5781 . . 3  |-  ( ( ( F  |`  D )  e.  _V  /\  ( G  |`  D )  e. 
_V )  ->  (
( F  |`  D )  oF R ( G  |`  D )
)  =  ( x  e.  ( dom  ( F  |`  D )  i^i 
dom  ( G  |`  D ) )  |->  ( ( ( F  |`  D ) `  x
) R ( ( G  |`  D ) `  x ) ) ) )
2320, 21, 22syl2an 283 . 2  |-  ( ( F  e.  V  /\  G  e.  W )  ->  ( ( F  |`  D )  oF R ( G  |`  D ) )  =  ( x  e.  ( dom  ( F  |`  D )  i^i  dom  ( G  |`  D ) )  |->  ( ( ( F  |`  D ) `  x ) R ( ( G  |`  D ) `
 x ) ) ) )
2417, 19, 233eqtr4a 2139 1  |-  ( ( F  e.  V  /\  G  e.  W )  ->  ( ( F  oF R G )  |`  D )  =  ( ( F  |`  D )  oF R ( G  |`  D )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433   _Vcvv 2601    i^i cin 2972    |-> cmpt 3839   dom cdm 4363    |` cres 4365   ` cfv 4922  (class class class)co 5532    oFcof 5730
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-of 5732
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator