ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resima Unicode version

Theorem resima 4661
Description: A restriction to an image. (Contributed by NM, 29-Sep-2004.)
Assertion
Ref Expression
resima  |-  ( ( A  |`  B ) " B )  =  ( A " B )

Proof of Theorem resima
StepHypRef Expression
1 residm 4660 . . 3  |-  ( ( A  |`  B )  |`  B )  =  ( A  |`  B )
21rneqi 4580 . 2  |-  ran  (
( A  |`  B )  |`  B )  =  ran  ( A  |`  B )
3 df-ima 4376 . 2  |-  ( ( A  |`  B ) " B )  =  ran  ( ( A  |`  B )  |`  B )
4 df-ima 4376 . 2  |-  ( A
" B )  =  ran  ( A  |`  B )
52, 3, 43eqtr4i 2111 1  |-  ( ( A  |`  B ) " B )  =  ( A " B )
Colors of variables: wff set class
Syntax hints:    = wceq 1284   ran crn 4364    |` cres 4365   "cima 4366
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-xp 4369  df-rel 4370  df-cnv 4371  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376
This theorem is referenced by:  isarep2  5006  f1imacnv  5163  foimacnv  5164  elq  8707
  Copyright terms: Public domain W3C validator