![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ralimi | Unicode version |
Description: Inference quantifying both antecedent and consequent, with strong hypothesis. (Contributed by NM, 4-Mar-1997.) |
Ref | Expression |
---|---|
ralimi.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ralimi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimi.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | ralimia 2424 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 |
This theorem depends on definitions: df-bi 115 df-ral 2353 |
This theorem is referenced by: ral2imi 2427 r19.26 2485 r19.29 2494 rr19.3v 2733 rr19.28v 2734 reu3 2782 uniiunlem 3082 reupick2 3250 uniss2 3632 ss2iun 3693 iineq2 3695 iunss2 3723 disjss2 3769 disjeq2 3770 repizf 3894 reusv3i 4209 tfis 4324 ssrel2 4448 issref 4727 dmmptg 4838 funco 4960 fununi 4987 fun11uni 4989 funimaexglem 5002 fnmpt 5045 fun11iun 5167 mpteqb 5282 chfnrn 5299 dffo5 5337 ffvresb 5349 fmptcof 5352 dfmptg 5363 mpt22eqb 5630 ralrnmpt2 5635 rexrnmpt2 5636 fnmpt2 5848 mpt2exxg 5853 smores 5930 riinerm 6202 cauappcvgprlemdisj 6841 caucvgsrlemasr 6966 caucvgsr 6978 rexuz3 9876 recvguniq 9881 cau3lem 10000 caubnd2 10003 rexanre 10106 climi2 10127 climi0 10128 climcaucn 10188 ndvdssub 10330 gcdsupex 10349 gcdsupcl 10350 bezoutlemmo 10395 bj-indint 10726 bj-indind 10727 bj-bdfindis 10742 setindis 10762 bdsetindis 10764 |
Copyright terms: Public domain | W3C validator |