![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > equcom | Unicode version |
Description: Commutative law for equality. (Contributed by NM, 20-Aug-1993.) |
Ref | Expression |
---|---|
equcom |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcomi 1632 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | equcomi 1632 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | impbii 124 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-gen 1378 ax-ie2 1423 ax-8 1435 ax-17 1459 ax-i9 1463 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: sbal1yz 1918 dveeq1 1936 eu1 1966 reu7 2787 reu8 2788 iunid 3733 copsexg 3999 opelopabsbALT 4014 dtruex 4302 opeliunxp 4413 relop 4504 dmi 4568 opabresid 4679 intirr 4731 cnvi 4748 coi1 4856 brprcneu 5191 f1oiso 5485 qsid 6194 bezoutlemle 10397 |
Copyright terms: Public domain | W3C validator |