| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexcom | Unicode version | ||
| Description: Commutation of restricted quantifiers. (Contributed by NM, 19-Nov-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| rexcom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2219 |
. 2
| |
| 2 | nfcv 2219 |
. 2
| |
| 3 | 1, 2 | rexcomf 2516 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 |
| This theorem is referenced by: rexcom13 2519 rexcom4 2622 iuncom 3684 xpiundi 4416 addcomprg 6768 mulcomprg 6770 ltexprlemm 6790 caucvgprprlemexbt 6896 qmulz 8708 caubnd2 10003 sqrt2irr 10541 |
| Copyright terms: Public domain | W3C validator |