ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riota2f Unicode version

Theorem riota2f 5509
Description: This theorem shows a condition that allows us to represent a descriptor with a class expression  B. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
riota2f.1  |-  F/_ x B
riota2f.2  |-  F/ x ps
riota2f.3  |-  ( x  =  B  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
riota2f  |-  ( ( B  e.  A  /\  E! x  e.  A  ph )  ->  ( ps  <->  (
iota_ x  e.  A  ph )  =  B ) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    ps( x)    B( x)

Proof of Theorem riota2f
StepHypRef Expression
1 riota2f.1 . . 3  |-  F/_ x B
21nfel1 2229 . 2  |-  F/ x  B  e.  A
31a1i 9 . 2  |-  ( B  e.  A  ->  F/_ x B )
4 riota2f.2 . . 3  |-  F/ x ps
54a1i 9 . 2  |-  ( B  e.  A  ->  F/ x ps )
6 id 19 . 2  |-  ( B  e.  A  ->  B  e.  A )
7 riota2f.3 . . 3  |-  ( x  =  B  ->  ( ph 
<->  ps ) )
87adantl 271 . 2  |-  ( ( B  e.  A  /\  x  =  B )  ->  ( ph  <->  ps )
)
92, 3, 5, 6, 8riota2df 5508 1  |-  ( ( B  e.  A  /\  E! x  e.  A  ph )  ->  ( ps  <->  (
iota_ x  e.  A  ph )  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284   F/wnf 1389    e. wcel 1433   F/_wnfc 2206   E!wreu 2350   iota_crio 5487
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-reu 2355  df-v 2603  df-sbc 2816  df-un 2977  df-sn 3404  df-pr 3405  df-uni 3602  df-iota 4887  df-riota 5488
This theorem is referenced by:  riota2  5510  riotaprop  5511  riotass2  5514  riotass  5515
  Copyright terms: Public domain W3C validator