| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > riota2df | Unicode version | ||
| Description: A deduction version of riota2f 5509. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| riota2df.1 |
|
| riota2df.2 |
|
| riota2df.3 |
|
| riota2df.4 |
|
| riota2df.5 |
|
| Ref | Expression |
|---|---|
| riota2df |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riota2df.4 |
. . . 4
| |
| 2 | 1 | adantr 270 |
. . 3
|
| 3 | simpr 108 |
. . . 4
| |
| 4 | df-reu 2355 |
. . . 4
| |
| 5 | 3, 4 | sylib 120 |
. . 3
|
| 6 | simpr 108 |
. . . . . 6
| |
| 7 | 2 | adantr 270 |
. . . . . 6
|
| 8 | 6, 7 | eqeltrd 2155 |
. . . . 5
|
| 9 | 8 | biantrurd 299 |
. . . 4
|
| 10 | riota2df.5 |
. . . . 5
| |
| 11 | 10 | adantlr 460 |
. . . 4
|
| 12 | 9, 11 | bitr3d 188 |
. . 3
|
| 13 | riota2df.1 |
. . . 4
| |
| 14 | nfreu1 2525 |
. . . 4
| |
| 15 | 13, 14 | nfan 1497 |
. . 3
|
| 16 | riota2df.3 |
. . . 4
| |
| 17 | 16 | adantr 270 |
. . 3
|
| 18 | riota2df.2 |
. . . 4
| |
| 19 | 18 | adantr 270 |
. . 3
|
| 20 | 2, 5, 12, 15, 17, 19 | iota2df 4911 |
. 2
|
| 21 | df-riota 5488 |
. . 3
| |
| 22 | 21 | eqeq1i 2088 |
. 2
|
| 23 | 20, 22 | syl6bbr 196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-reu 2355 df-v 2603 df-sbc 2816 df-un 2977 df-sn 3404 df-pr 3405 df-uni 3602 df-iota 4887 df-riota 5488 |
| This theorem is referenced by: riota2f 5509 riota5f 5512 |
| Copyright terms: Public domain | W3C validator |