| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rntpos | Unicode version | ||
| Description: The range of tpos |
| Ref | Expression |
|---|---|
| rntpos |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2604 |
. . . . 5
| |
| 2 | 1 | elrn 4595 |
. . . 4
|
| 3 | vex 2604 |
. . . . . . . . 9
| |
| 4 | 3, 1 | breldm 4557 |
. . . . . . . 8
|
| 5 | dmtpos 5894 |
. . . . . . . . 9
| |
| 6 | 5 | eleq2d 2148 |
. . . . . . . 8
|
| 7 | 4, 6 | syl5ib 152 |
. . . . . . 7
|
| 8 | relcnv 4723 |
. . . . . . . 8
| |
| 9 | elrel 4460 |
. . . . . . . 8
| |
| 10 | 8, 9 | mpan 414 |
. . . . . . 7
|
| 11 | 7, 10 | syl6 33 |
. . . . . 6
|
| 12 | breq1 3788 |
. . . . . . . . 9
| |
| 13 | vex 2604 |
. . . . . . . . . 10
| |
| 14 | vex 2604 |
. . . . . . . . . 10
| |
| 15 | brtposg 5892 |
. . . . . . . . . 10
| |
| 16 | 13, 14, 1, 15 | mp3an 1268 |
. . . . . . . . 9
|
| 17 | 12, 16 | syl6bb 194 |
. . . . . . . 8
|
| 18 | 14, 13 | opex 3984 |
. . . . . . . . 9
|
| 19 | 18, 1 | brelrn 4585 |
. . . . . . . 8
|
| 20 | 17, 19 | syl6bi 161 |
. . . . . . 7
|
| 21 | 20 | exlimivv 1817 |
. . . . . 6
|
| 22 | 11, 21 | syli 37 |
. . . . 5
|
| 23 | 22 | exlimdv 1740 |
. . . 4
|
| 24 | 2, 23 | syl5bi 150 |
. . 3
|
| 25 | 1 | elrn 4595 |
. . . 4
|
| 26 | 3, 1 | breldm 4557 |
. . . . . . 7
|
| 27 | elrel 4460 |
. . . . . . . 8
| |
| 28 | 27 | ex 113 |
. . . . . . 7
|
| 29 | 26, 28 | syl5 32 |
. . . . . 6
|
| 30 | breq1 3788 |
. . . . . . . . 9
| |
| 31 | 30, 16 | syl6bbr 196 |
. . . . . . . 8
|
| 32 | 13, 14 | opex 3984 |
. . . . . . . . 9
|
| 33 | 32, 1 | brelrn 4585 |
. . . . . . . 8
|
| 34 | 31, 33 | syl6bi 161 |
. . . . . . 7
|
| 35 | 34 | exlimivv 1817 |
. . . . . 6
|
| 36 | 29, 35 | syli 37 |
. . . . 5
|
| 37 | 36 | exlimdv 1740 |
. . . 4
|
| 38 | 25, 37 | syl5bi 150 |
. . 3
|
| 39 | 24, 38 | impbid 127 |
. 2
|
| 40 | 39 | eqrdv 2079 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-fv 4930 df-tpos 5883 |
| This theorem is referenced by: tposfo2 5905 |
| Copyright terms: Public domain | W3C validator |