| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ruALT | Unicode version | ||
| Description: Alternate proof of Russell's Paradox ru 2814, simplified using (indirectly) the Axiom of Set Induction ax-setind 4280. (Contributed by Alan Sare, 4-Oct-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ruALT |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vprc 3909 |
. . 3
| |
| 2 | df-nel 2340 |
. . 3
| |
| 3 | 1, 2 | mpbir 144 |
. 2
|
| 4 | ruv 4293 |
. . 3
| |
| 5 | neleq1 2343 |
. . 3
| |
| 6 | 4, 5 | ax-mp 7 |
. 2
|
| 7 | 3, 6 | mpbir 144 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-setind 4280 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-v 2603 df-dif 2975 df-sn 3404 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |