ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcco Unicode version

Theorem sbcco 2836
Description: A composition law for class substitution. (Contributed by NM, 26-Sep-2003.) (Revised by Mario Carneiro, 13-Oct-2016.)
Assertion
Ref Expression
sbcco  |-  ( [. A  /  y ]. [. y  /  x ]. ph  <->  [. A  /  x ]. ph )
Distinct variable group:    ph, y
Allowed substitution hints:    ph( x)    A( x, y)

Proof of Theorem sbcco
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 sbcex 2823 . 2  |-  ( [. A  /  y ]. [. y  /  x ]. ph  ->  A  e.  _V )
2 sbcex 2823 . 2  |-  ( [. A  /  x ]. ph  ->  A  e.  _V )
3 dfsbcq 2817 . . 3  |-  ( z  =  A  ->  ( [. z  /  y ]. [. y  /  x ]. ph  <->  [. A  /  y ]. [. y  /  x ]. ph ) )
4 dfsbcq 2817 . . 3  |-  ( z  =  A  ->  ( [. z  /  x ]. ph  <->  [. A  /  x ]. ph ) )
5 sbsbc 2819 . . . . . 6  |-  ( [ y  /  x ] ph 
<-> 
[. y  /  x ]. ph )
65sbbii 1688 . . . . 5  |-  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  y ] [. y  /  x ]. ph )
7 nfv 1461 . . . . . 6  |-  F/ y
ph
87sbco2 1880 . . . . 5  |-  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  x ] ph )
9 sbsbc 2819 . . . . 5  |-  ( [ z  /  y ]
[. y  /  x ]. ph  <->  [. z  /  y ]. [. y  /  x ]. ph )
106, 8, 93bitr3ri 209 . . . 4  |-  ( [. z  /  y ]. [. y  /  x ]. ph  <->  [ z  /  x ] ph )
11 sbsbc 2819 . . . 4  |-  ( [ z  /  x ] ph 
<-> 
[. z  /  x ]. ph )
1210, 11bitri 182 . . 3  |-  ( [. z  /  y ]. [. y  /  x ]. ph  <->  [. z  /  x ]. ph )
133, 4, 12vtoclbg 2659 . 2  |-  ( A  e.  _V  ->  ( [. A  /  y ]. [. y  /  x ]. ph  <->  [. A  /  x ]. ph ) )
141, 2, 13pm5.21nii 652 1  |-  ( [. A  /  y ]. [. y  /  x ]. ph  <->  [. A  /  x ]. ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 103    e. wcel 1433   [wsb 1685   _Vcvv 2601   [.wsbc 2815
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-sbc 2816
This theorem is referenced by:  sbc7  2841  sbccom  2889  sbcralt  2890  sbcrext  2891  csbco  2917
  Copyright terms: Public domain W3C validator