ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcralt Unicode version

Theorem sbcralt 2890
Description: Interchange class substitution and restricted quantifier. (Contributed by NM, 1-Mar-2008.) (Revised by David Abernethy, 22-Feb-2010.)
Assertion
Ref Expression
sbcralt  |-  ( ( A  e.  V  /\  F/_ y A )  -> 
( [. A  /  x ]. A. y  e.  B  ph  <->  A. y  e.  B  [. A  /  x ]. ph )
)
Distinct variable groups:    x, y    x, B
Allowed substitution hints:    ph( x, y)    A( x, y)    B( y)    V( x, y)

Proof of Theorem sbcralt
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 sbcco 2836 . 2  |-  ( [. A  /  z ]. [. z  /  x ]. A. y  e.  B  ph  <->  [. A  /  x ]. A. y  e.  B  ph )
2 simpl 107 . . 3  |-  ( ( A  e.  V  /\  F/_ y A )  ->  A  e.  V )
3 sbsbc 2819 . . . . 5  |-  ( [ z  /  x ] A. y  e.  B  ph  <->  [. z  /  x ]. A. y  e.  B  ph )
4 nfcv 2219 . . . . . . 7  |-  F/_ x B
5 nfs1v 1856 . . . . . . 7  |-  F/ x [ z  /  x ] ph
64, 5nfralxy 2402 . . . . . 6  |-  F/ x A. y  e.  B  [ z  /  x ] ph
7 sbequ12 1694 . . . . . . 7  |-  ( x  =  z  ->  ( ph 
<->  [ z  /  x ] ph ) )
87ralbidv 2368 . . . . . 6  |-  ( x  =  z  ->  ( A. y  e.  B  ph  <->  A. y  e.  B  [
z  /  x ] ph ) )
96, 8sbie 1714 . . . . 5  |-  ( [ z  /  x ] A. y  e.  B  ph  <->  A. y  e.  B  [
z  /  x ] ph )
103, 9bitr3i 184 . . . 4  |-  ( [. z  /  x ]. A. y  e.  B  ph  <->  A. y  e.  B  [ z  /  x ] ph )
11 nfnfc1 2222 . . . . . . 7  |-  F/ y
F/_ y A
12 nfcvd 2220 . . . . . . . 8  |-  ( F/_ y A  ->  F/_ y
z )
13 id 19 . . . . . . . 8  |-  ( F/_ y A  ->  F/_ y A )
1412, 13nfeqd 2233 . . . . . . 7  |-  ( F/_ y A  ->  F/ y  z  =  A )
1511, 14nfan1 1496 . . . . . 6  |-  F/ y ( F/_ y A  /\  z  =  A )
16 dfsbcq2 2818 . . . . . . 7  |-  ( z  =  A  ->  ( [ z  /  x ] ph  <->  [. A  /  x ]. ph ) )
1716adantl 271 . . . . . 6  |-  ( (
F/_ y A  /\  z  =  A )  ->  ( [ z  /  x ] ph  <->  [. A  /  x ]. ph ) )
1815, 17ralbid 2366 . . . . 5  |-  ( (
F/_ y A  /\  z  =  A )  ->  ( A. y  e.  B  [ z  /  x ] ph  <->  A. y  e.  B  [. A  /  x ]. ph ) )
1918adantll 459 . . . 4  |-  ( ( ( A  e.  V  /\  F/_ y A )  /\  z  =  A )  ->  ( A. y  e.  B  [
z  /  x ] ph 
<-> 
A. y  e.  B  [. A  /  x ]. ph ) )
2010, 19syl5bb 190 . . 3  |-  ( ( ( A  e.  V  /\  F/_ y A )  /\  z  =  A )  ->  ( [. z  /  x ]. A. y  e.  B  ph  <->  A. y  e.  B  [. A  /  x ]. ph ) )
212, 20sbcied 2850 . 2  |-  ( ( A  e.  V  /\  F/_ y A )  -> 
( [. A  /  z ]. [. z  /  x ]. A. y  e.  B  ph  <->  A. y  e.  B  [. A  /  x ]. ph )
)
221, 21syl5bbr 192 1  |-  ( ( A  e.  V  /\  F/_ y A )  -> 
( [. A  /  x ]. A. y  e.  B  ph  <->  A. y  e.  B  [. A  /  x ]. ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   [wsb 1685   F/_wnfc 2206   A.wral 2348   [.wsbc 2815
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603  df-sbc 2816
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator