| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcrext | Unicode version | ||
| Description: Interchange class substitution and restricted existential quantifier. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbcrext |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex 2823 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | nfnfc1 2222 |
. . 3
| |
| 4 | id 19 |
. . . 4
| |
| 5 | nfcvd 2220 |
. . . 4
| |
| 6 | 4, 5 | nfeld 2234 |
. . 3
|
| 7 | sbcex 2823 |
. . . 4
| |
| 8 | 7 | 2a1i 27 |
. . 3
|
| 9 | 3, 6, 8 | rexlimd2 2475 |
. 2
|
| 10 | sbcco 2836 |
. . . 4
| |
| 11 | simpl 107 |
. . . . 5
| |
| 12 | sbsbc 2819 |
. . . . . . 7
| |
| 13 | nfcv 2219 |
. . . . . . . . 9
| |
| 14 | nfs1v 1856 |
. . . . . . . . 9
| |
| 15 | 13, 14 | nfrexxy 2403 |
. . . . . . . 8
|
| 16 | sbequ12 1694 |
. . . . . . . . 9
| |
| 17 | 16 | rexbidv 2369 |
. . . . . . . 8
|
| 18 | 15, 17 | sbie 1714 |
. . . . . . 7
|
| 19 | 12, 18 | bitr3i 184 |
. . . . . 6
|
| 20 | nfcvd 2220 |
. . . . . . . . . 10
| |
| 21 | 20, 4 | nfeqd 2233 |
. . . . . . . . 9
|
| 22 | 3, 21 | nfan1 1496 |
. . . . . . . 8
|
| 23 | dfsbcq2 2818 |
. . . . . . . . 9
| |
| 24 | 23 | adantl 271 |
. . . . . . . 8
|
| 25 | 22, 24 | rexbid 2367 |
. . . . . . 7
|
| 26 | 25 | adantll 459 |
. . . . . 6
|
| 27 | 19, 26 | syl5bb 190 |
. . . . 5
|
| 28 | 11, 27 | sbcied 2850 |
. . . 4
|
| 29 | 10, 28 | syl5bbr 192 |
. . 3
|
| 30 | 29 | expcom 114 |
. 2
|
| 31 | 2, 9, 30 | pm5.21ndd 653 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 |
| This theorem is referenced by: sbcrex 2893 |
| Copyright terms: Public domain | W3C validator |