ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcfg Unicode version

Theorem sbcfg 5065
Description: Distribute proper substitution through the function predicate with domain and codomain. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Assertion
Ref Expression
sbcfg  |-  ( X  e.  V  ->  ( [. X  /  x ]. F : A --> B  <->  [_ X  /  x ]_ F : [_ X  /  x ]_ A --> [_ X  /  x ]_ B ) )
Distinct variable groups:    x, V    x, X
Allowed substitution hints:    A( x)    B( x)    F( x)

Proof of Theorem sbcfg
StepHypRef Expression
1 df-f 4926 . . . 4  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
21a1i 9 . . 3  |-  ( X  e.  V  ->  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) ) )
32sbcbidv 2872 . 2  |-  ( X  e.  V  ->  ( [. X  /  x ]. F : A --> B  <->  [. X  /  x ]. ( F  Fn  A  /\  ran  F  C_  B ) ) )
4 sbcfng 5064 . . . 4  |-  ( X  e.  V  ->  ( [. X  /  x ]. F  Fn  A  <->  [_ X  /  x ]_ F  Fn  [_ X  /  x ]_ A ) )
5 sbcssg 3350 . . . . 5  |-  ( X  e.  V  ->  ( [. X  /  x ]. ran  F  C_  B  <->  [_ X  /  x ]_ ran  F  C_  [_ X  /  x ]_ B ) )
6 csbrng 4802 . . . . . 6  |-  ( X  e.  V  ->  [_ X  /  x ]_ ran  F  =  ran  [_ X  /  x ]_ F )
76sseq1d 3026 . . . . 5  |-  ( X  e.  V  ->  ( [_ X  /  x ]_ ran  F  C_  [_ X  /  x ]_ B  <->  ran  [_ X  /  x ]_ F  C_  [_ X  /  x ]_ B ) )
85, 7bitrd 186 . . . 4  |-  ( X  e.  V  ->  ( [. X  /  x ]. ran  F  C_  B  <->  ran  [_ X  /  x ]_ F  C_  [_ X  /  x ]_ B ) )
94, 8anbi12d 456 . . 3  |-  ( X  e.  V  ->  (
( [. X  /  x ]. F  Fn  A  /\  [. X  /  x ]. ran  F  C_  B
)  <->  ( [_ X  /  x ]_ F  Fn  [_ X  /  x ]_ A  /\  ran  [_ X  /  x ]_ F  C_  [_ X  /  x ]_ B ) ) )
10 sbcan 2856 . . 3  |-  ( [. X  /  x ]. ( F  Fn  A  /\  ran  F  C_  B )  <->  (
[. X  /  x ]. F  Fn  A  /\  [. X  /  x ]. ran  F  C_  B
) )
11 df-f 4926 . . 3  |-  ( [_ X  /  x ]_ F : [_ X  /  x ]_ A --> [_ X  /  x ]_ B  <->  ( [_ X  /  x ]_ F  Fn  [_ X  /  x ]_ A  /\  ran  [_ X  /  x ]_ F  C_  [_ X  /  x ]_ B ) )
129, 10, 113bitr4g 221 . 2  |-  ( X  e.  V  ->  ( [. X  /  x ]. ( F  Fn  A  /\  ran  F  C_  B
)  <->  [_ X  /  x ]_ F : [_ X  /  x ]_ A --> [_ X  /  x ]_ B ) )
133, 12bitrd 186 1  |-  ( X  e.  V  ->  ( [. X  /  x ]. F : A --> B  <->  [_ X  /  x ]_ F : [_ X  /  x ]_ A --> [_ X  /  x ]_ B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    e. wcel 1433   [.wsbc 2815   [_csb 2908    C_ wss 2973   ran crn 4364    Fn wfn 4917   -->wf 4918
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603  df-sbc 2816  df-csb 2909  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-id 4048  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-fun 4924  df-fn 4925  df-f 4926
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator