| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbhypf | Unicode version | ||
| Description: Introduce an explicit substitution into an implicit substitution hypothesis. See also csbhypf . (Contributed by Raph Levien, 10-Apr-2004.) |
| Ref | Expression |
|---|---|
| sbhypf.1 |
|
| sbhypf.2 |
|
| Ref | Expression |
|---|---|
| sbhypf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2604 |
. . 3
| |
| 2 | eqeq1 2087 |
. . 3
| |
| 3 | 1, 2 | ceqsexv 2638 |
. 2
|
| 4 | nfs1v 1856 |
. . . 4
| |
| 5 | sbhypf.1 |
. . . 4
| |
| 6 | 4, 5 | nfbi 1521 |
. . 3
|
| 7 | sbequ12 1694 |
. . . . 5
| |
| 8 | 7 | bicomd 139 |
. . . 4
|
| 9 | sbhypf.2 |
. . . 4
| |
| 10 | 8, 9 | sylan9bb 449 |
. . 3
|
| 11 | 6, 10 | exlimi 1525 |
. 2
|
| 12 | 3, 11 | sylbir 133 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-11 1437 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-v 2603 |
| This theorem is referenced by: mob2 2772 tfisi 4328 ralxpf 4500 rexxpf 4501 nn0ind-raph 8464 |
| Copyright terms: Public domain | W3C validator |