ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftlem Unicode version

Theorem shftlem 9704
Description: Two ways to write a shifted set  ( B  +  A ). (Contributed by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
shftlem  |-  ( ( A  e.  CC  /\  B  C_  CC )  ->  { x  e.  CC  |  ( x  -  A )  e.  B }  =  { x  |  E. y  e.  B  x  =  ( y  +  A ) } )
Distinct variable groups:    x, y, A   
x, B, y

Proof of Theorem shftlem
StepHypRef Expression
1 df-rab 2357 . 2  |-  { x  e.  CC  |  ( x  -  A )  e.  B }  =  {
x  |  ( x  e.  CC  /\  (
x  -  A )  e.  B ) }
2 npcan 7317 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  A  e.  CC )  ->  ( ( x  -  A )  +  A
)  =  x )
32ancoms 264 . . . . . . . 8  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( ( x  -  A )  +  A
)  =  x )
43eqcomd 2086 . . . . . . 7  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  x  =  ( ( x  -  A )  +  A ) )
5 oveq1 5539 . . . . . . . . . 10  |-  ( y  =  ( x  -  A )  ->  (
y  +  A )  =  ( ( x  -  A )  +  A ) )
65eqeq2d 2092 . . . . . . . . 9  |-  ( y  =  ( x  -  A )  ->  (
x  =  ( y  +  A )  <->  x  =  ( ( x  -  A )  +  A
) ) )
76rspcev 2701 . . . . . . . 8  |-  ( ( ( x  -  A
)  e.  B  /\  x  =  ( (
x  -  A )  +  A ) )  ->  E. y  e.  B  x  =  ( y  +  A ) )
87expcom 114 . . . . . . 7  |-  ( x  =  ( ( x  -  A )  +  A )  ->  (
( x  -  A
)  e.  B  ->  E. y  e.  B  x  =  ( y  +  A ) ) )
94, 8syl 14 . . . . . 6  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( ( x  -  A )  e.  B  ->  E. y  e.  B  x  =  ( y  +  A ) ) )
109expimpd 355 . . . . 5  |-  ( A  e.  CC  ->  (
( x  e.  CC  /\  ( x  -  A
)  e.  B )  ->  E. y  e.  B  x  =  ( y  +  A ) ) )
1110adantr 270 . . . 4  |-  ( ( A  e.  CC  /\  B  C_  CC )  -> 
( ( x  e.  CC  /\  ( x  -  A )  e.  B )  ->  E. y  e.  B  x  =  ( y  +  A
) ) )
12 ssel2 2994 . . . . . . . . . 10  |-  ( ( B  C_  CC  /\  y  e.  B )  ->  y  e.  CC )
13 addcl 7098 . . . . . . . . . 10  |-  ( ( y  e.  CC  /\  A  e.  CC )  ->  ( y  +  A
)  e.  CC )
1412, 13sylan 277 . . . . . . . . 9  |-  ( ( ( B  C_  CC  /\  y  e.  B )  /\  A  e.  CC )  ->  ( y  +  A )  e.  CC )
15 pncan 7314 . . . . . . . . . . 11  |-  ( ( y  e.  CC  /\  A  e.  CC )  ->  ( ( y  +  A )  -  A
)  =  y )
1612, 15sylan 277 . . . . . . . . . 10  |-  ( ( ( B  C_  CC  /\  y  e.  B )  /\  A  e.  CC )  ->  ( ( y  +  A )  -  A )  =  y )
17 simplr 496 . . . . . . . . . 10  |-  ( ( ( B  C_  CC  /\  y  e.  B )  /\  A  e.  CC )  ->  y  e.  B
)
1816, 17eqeltrd 2155 . . . . . . . . 9  |-  ( ( ( B  C_  CC  /\  y  e.  B )  /\  A  e.  CC )  ->  ( ( y  +  A )  -  A )  e.  B
)
1914, 18jca 300 . . . . . . . 8  |-  ( ( ( B  C_  CC  /\  y  e.  B )  /\  A  e.  CC )  ->  ( ( y  +  A )  e.  CC  /\  ( ( y  +  A )  -  A )  e.  B ) )
2019ancoms 264 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( B  C_  CC  /\  y  e.  B )
)  ->  ( (
y  +  A )  e.  CC  /\  (
( y  +  A
)  -  A )  e.  B ) )
2120anassrs 392 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  C_  CC )  /\  y  e.  B
)  ->  ( (
y  +  A )  e.  CC  /\  (
( y  +  A
)  -  A )  e.  B ) )
22 eleq1 2141 . . . . . . 7  |-  ( x  =  ( y  +  A )  ->  (
x  e.  CC  <->  ( y  +  A )  e.  CC ) )
23 oveq1 5539 . . . . . . . 8  |-  ( x  =  ( y  +  A )  ->  (
x  -  A )  =  ( ( y  +  A )  -  A ) )
2423eleq1d 2147 . . . . . . 7  |-  ( x  =  ( y  +  A )  ->  (
( x  -  A
)  e.  B  <->  ( (
y  +  A )  -  A )  e.  B ) )
2522, 24anbi12d 456 . . . . . 6  |-  ( x  =  ( y  +  A )  ->  (
( x  e.  CC  /\  ( x  -  A
)  e.  B )  <-> 
( ( y  +  A )  e.  CC  /\  ( ( y  +  A )  -  A
)  e.  B ) ) )
2621, 25syl5ibrcom 155 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  C_  CC )  /\  y  e.  B
)  ->  ( x  =  ( y  +  A )  ->  (
x  e.  CC  /\  ( x  -  A
)  e.  B ) ) )
2726rexlimdva 2477 . . . 4  |-  ( ( A  e.  CC  /\  B  C_  CC )  -> 
( E. y  e.  B  x  =  ( y  +  A )  ->  ( x  e.  CC  /\  ( x  -  A )  e.  B ) ) )
2811, 27impbid 127 . . 3  |-  ( ( A  e.  CC  /\  B  C_  CC )  -> 
( ( x  e.  CC  /\  ( x  -  A )  e.  B )  <->  E. y  e.  B  x  =  ( y  +  A
) ) )
2928abbidv 2196 . 2  |-  ( ( A  e.  CC  /\  B  C_  CC )  ->  { x  |  (
x  e.  CC  /\  ( x  -  A
)  e.  B ) }  =  { x  |  E. y  e.  B  x  =  ( y  +  A ) } )
301, 29syl5eq 2125 1  |-  ( ( A  e.  CC  /\  B  C_  CC )  ->  { x  e.  CC  |  ( x  -  A )  e.  B }  =  { x  |  E. y  e.  B  x  =  ( y  +  A ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433   {cab 2067   E.wrex 2349   {crab 2352    C_ wss 2973  (class class class)co 5532   CCcc 6979    + caddc 6984    - cmin 7279
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-setind 4280  ax-resscn 7068  ax-1cn 7069  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-sub 7281
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator