| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snssg | Unicode version | ||
| Description: The singleton of an element of a class is a subset of the class. Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 22-Jul-2001.) |
| Ref | Expression |
|---|---|
| snssg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2141 |
. 2
| |
| 2 | sneq 3409 |
. . 3
| |
| 3 | 2 | sseq1d 3026 |
. 2
|
| 4 | vex 2604 |
. . 3
| |
| 5 | 4 | snss 3516 |
. 2
|
| 6 | 1, 3, 5 | vtoclbg 2659 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-in 2979 df-ss 2986 df-sn 3404 |
| This theorem is referenced by: snssi 3529 snssd 3530 prssg 3542 ordtri2orexmid 4266 ordtri2or2exmid 4314 fvimacnvi 5302 fvimacnv 5303 |
| Copyright terms: Public domain | W3C validator |