| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordtri2or2exmid | Unicode version | ||
| Description: Ordinal trichotomy implies excluded middle. (Contributed by Jim Kingdon, 29-Aug-2021.) |
| Ref | Expression |
|---|---|
| ordtri2or2exmid.1 |
|
| Ref | Expression |
|---|---|
| ordtri2or2exmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtri2or2exmid.1 |
. . . 4
| |
| 2 | ordtri2or2exmidlem 4269 |
. . . . 5
| |
| 3 | suc0 4166 |
. . . . . 6
| |
| 4 | 0elon 4147 |
. . . . . . 7
| |
| 5 | 4 | onsuci 4260 |
. . . . . 6
|
| 6 | 3, 5 | eqeltrri 2152 |
. . . . 5
|
| 7 | sseq1 3020 |
. . . . . . 7
| |
| 8 | sseq2 3021 |
. . . . . . 7
| |
| 9 | 7, 8 | orbi12d 739 |
. . . . . 6
|
| 10 | sseq2 3021 |
. . . . . . 7
| |
| 11 | sseq1 3020 |
. . . . . . 7
| |
| 12 | 10, 11 | orbi12d 739 |
. . . . . 6
|
| 13 | 9, 12 | rspc2va 2714 |
. . . . 5
|
| 14 | 2, 6, 13 | mpanl12 426 |
. . . 4
|
| 15 | 1, 14 | ax-mp 7 |
. . 3
|
| 16 | elirr 4284 |
. . . . 5
| |
| 17 | simpl 107 |
. . . . . . 7
| |
| 18 | simpr 108 |
. . . . . . . 8
| |
| 19 | p0ex 3959 |
. . . . . . . . . 10
| |
| 20 | 19 | prid2 3499 |
. . . . . . . . 9
|
| 21 | biidd 170 |
. . . . . . . . . 10
| |
| 22 | 21 | elrab3 2750 |
. . . . . . . . 9
|
| 23 | 20, 22 | ax-mp 7 |
. . . . . . . 8
|
| 24 | 18, 23 | sylibr 132 |
. . . . . . 7
|
| 25 | 17, 24 | sseldd 3000 |
. . . . . 6
|
| 26 | 25 | ex 113 |
. . . . 5
|
| 27 | 16, 26 | mtoi 622 |
. . . 4
|
| 28 | snssg 3522 |
. . . . . 6
| |
| 29 | 4, 28 | ax-mp 7 |
. . . . 5
|
| 30 | 0ex 3905 |
. . . . . . . 8
| |
| 31 | 30 | prid1 3498 |
. . . . . . 7
|
| 32 | biidd 170 |
. . . . . . . 8
| |
| 33 | 32 | elrab3 2750 |
. . . . . . 7
|
| 34 | 31, 33 | ax-mp 7 |
. . . . . 6
|
| 35 | 34 | biimpi 118 |
. . . . 5
|
| 36 | 29, 35 | sylbir 133 |
. . . 4
|
| 37 | 27, 36 | orim12i 708 |
. . 3
|
| 38 | 15, 37 | ax-mp 7 |
. 2
|
| 39 | orcom 679 |
. 2
| |
| 40 | 38, 39 | mpbi 143 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-uni 3602 df-tr 3876 df-iord 4121 df-on 4123 df-suc 4126 |
| This theorem is referenced by: onintexmid 4315 |
| Copyright terms: Public domain | W3C validator |