| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssrelrel | Unicode version | ||
| Description: A subclass relationship determined by ordered triples. Use relrelss 4864 to express the antecedent in terms of the relation predicate. (Contributed by NM, 17-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| ssrelrel |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 2993 |
. . . 4
| |
| 2 | 1 | alrimiv 1795 |
. . 3
|
| 3 | 2 | alrimivv 1796 |
. 2
|
| 4 | elvvv 4421 |
. . . . . . . 8
| |
| 5 | eleq1 2141 |
. . . . . . . . . . . . . 14
| |
| 6 | eleq1 2141 |
. . . . . . . . . . . . . 14
| |
| 7 | 5, 6 | imbi12d 232 |
. . . . . . . . . . . . 13
|
| 8 | 7 | biimprcd 158 |
. . . . . . . . . . . 12
|
| 9 | 8 | alimi 1384 |
. . . . . . . . . . 11
|
| 10 | 19.23v 1804 |
. . . . . . . . . . 11
| |
| 11 | 9, 10 | sylib 120 |
. . . . . . . . . 10
|
| 12 | 11 | 2alimi 1385 |
. . . . . . . . 9
|
| 13 | 19.23vv 1805 |
. . . . . . . . 9
| |
| 14 | 12, 13 | sylib 120 |
. . . . . . . 8
|
| 15 | 4, 14 | syl5bi 150 |
. . . . . . 7
|
| 16 | 15 | com23 77 |
. . . . . 6
|
| 17 | 16 | a2d 26 |
. . . . 5
|
| 18 | 17 | alimdv 1800 |
. . . 4
|
| 19 | dfss2 2988 |
. . . 4
| |
| 20 | dfss2 2988 |
. . . 4
| |
| 21 | 18, 19, 20 | 3imtr4g 203 |
. . 3
|
| 22 | 21 | com12 30 |
. 2
|
| 23 | 3, 22 | impbid2 141 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-opab 3840 df-xp 4369 |
| This theorem is referenced by: eqrelrel 4459 |
| Copyright terms: Public domain | W3C validator |