| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suppssfv | Unicode version | ||
| Description: Formula building theorem for support restriction, on a function which preserves zero. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
| Ref | Expression |
|---|---|
| suppssfv.a |
|
| suppssfv.f |
|
| suppssfv.v |
|
| Ref | Expression |
|---|---|
| suppssfv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsni 3518 |
. . . . 5
| |
| 2 | suppssfv.v |
. . . . . . . . 9
| |
| 3 | elex 2610 |
. . . . . . . . 9
| |
| 4 | 2, 3 | syl 14 |
. . . . . . . 8
|
| 5 | 4 | adantr 270 |
. . . . . . 7
|
| 6 | suppssfv.f |
. . . . . . . . . . 11
| |
| 7 | fveq2 5198 |
. . . . . . . . . . . 12
| |
| 8 | 7 | eqeq1d 2089 |
. . . . . . . . . . 11
|
| 9 | 6, 8 | syl5ibrcom 155 |
. . . . . . . . . 10
|
| 10 | 9 | necon3d 2289 |
. . . . . . . . 9
|
| 11 | 10 | adantr 270 |
. . . . . . . 8
|
| 12 | 11 | imp 122 |
. . . . . . 7
|
| 13 | eldifsn 3517 |
. . . . . . 7
| |
| 14 | 5, 12, 13 | sylanbrc 408 |
. . . . . 6
|
| 15 | 14 | ex 113 |
. . . . 5
|
| 16 | 1, 15 | syl5 32 |
. . . 4
|
| 17 | 16 | ss2rabdv 3075 |
. . 3
|
| 18 | eqid 2081 |
. . . 4
| |
| 19 | 18 | mptpreima 4834 |
. . 3
|
| 20 | eqid 2081 |
. . . 4
| |
| 21 | 20 | mptpreima 4834 |
. . 3
|
| 22 | 17, 19, 21 | 3sstr4g 3040 |
. 2
|
| 23 | suppssfv.a |
. 2
| |
| 24 | 22, 23 | sstrd 3009 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-mpt 3841 df-xp 4369 df-rel 4370 df-cnv 4371 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fv 4930 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |