ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suppssfv Unicode version

Theorem suppssfv 5728
Description: Formula building theorem for support restriction, on a function which preserves zero. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypotheses
Ref Expression
suppssfv.a  |-  ( ph  ->  ( `' ( x  e.  D  |->  A )
" ( _V  \  { Y } ) ) 
C_  L )
suppssfv.f  |-  ( ph  ->  ( F `  Y
)  =  Z )
suppssfv.v  |-  ( (
ph  /\  x  e.  D )  ->  A  e.  V )
Assertion
Ref Expression
suppssfv  |-  ( ph  ->  ( `' ( x  e.  D  |->  ( F `
 A ) )
" ( _V  \  { Z } ) ) 
C_  L )
Distinct variable groups:    ph, x    x, Y    x, Z
Allowed substitution hints:    A( x)    D( x)    F( x)    L( x)    V( x)

Proof of Theorem suppssfv
StepHypRef Expression
1 eldifsni 3518 . . . . 5  |-  ( ( F `  A )  e.  ( _V  \  { Z } )  -> 
( F `  A
)  =/=  Z )
2 suppssfv.v . . . . . . . . 9  |-  ( (
ph  /\  x  e.  D )  ->  A  e.  V )
3 elex 2610 . . . . . . . . 9  |-  ( A  e.  V  ->  A  e.  _V )
42, 3syl 14 . . . . . . . 8  |-  ( (
ph  /\  x  e.  D )  ->  A  e.  _V )
54adantr 270 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  D )  /\  ( F `  A )  =/=  Z )  ->  A  e.  _V )
6 suppssfv.f . . . . . . . . . . 11  |-  ( ph  ->  ( F `  Y
)  =  Z )
7 fveq2 5198 . . . . . . . . . . . 12  |-  ( A  =  Y  ->  ( F `  A )  =  ( F `  Y ) )
87eqeq1d 2089 . . . . . . . . . . 11  |-  ( A  =  Y  ->  (
( F `  A
)  =  Z  <->  ( F `  Y )  =  Z ) )
96, 8syl5ibrcom 155 . . . . . . . . . 10  |-  ( ph  ->  ( A  =  Y  ->  ( F `  A )  =  Z ) )
109necon3d 2289 . . . . . . . . 9  |-  ( ph  ->  ( ( F `  A )  =/=  Z  ->  A  =/=  Y ) )
1110adantr 270 . . . . . . . 8  |-  ( (
ph  /\  x  e.  D )  ->  (
( F `  A
)  =/=  Z  ->  A  =/=  Y ) )
1211imp 122 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  D )  /\  ( F `  A )  =/=  Z )  ->  A  =/=  Y )
13 eldifsn 3517 . . . . . . 7  |-  ( A  e.  ( _V  \  { Y } )  <->  ( A  e.  _V  /\  A  =/= 
Y ) )
145, 12, 13sylanbrc 408 . . . . . 6  |-  ( ( ( ph  /\  x  e.  D )  /\  ( F `  A )  =/=  Z )  ->  A  e.  ( _V  \  { Y } ) )
1514ex 113 . . . . 5  |-  ( (
ph  /\  x  e.  D )  ->  (
( F `  A
)  =/=  Z  ->  A  e.  ( _V  \  { Y } ) ) )
161, 15syl5 32 . . . 4  |-  ( (
ph  /\  x  e.  D )  ->  (
( F `  A
)  e.  ( _V 
\  { Z }
)  ->  A  e.  ( _V  \  { Y } ) ) )
1716ss2rabdv 3075 . . 3  |-  ( ph  ->  { x  e.  D  |  ( F `  A )  e.  ( _V  \  { Z } ) }  C_  { x  e.  D  |  A  e.  ( _V  \  { Y } ) } )
18 eqid 2081 . . . 4  |-  ( x  e.  D  |->  ( F `
 A ) )  =  ( x  e.  D  |->  ( F `  A ) )
1918mptpreima 4834 . . 3  |-  ( `' ( x  e.  D  |->  ( F `  A
) ) " ( _V  \  { Z }
) )  =  {
x  e.  D  | 
( F `  A
)  e.  ( _V 
\  { Z }
) }
20 eqid 2081 . . . 4  |-  ( x  e.  D  |->  A )  =  ( x  e.  D  |->  A )
2120mptpreima 4834 . . 3  |-  ( `' ( x  e.  D  |->  A ) " ( _V  \  { Y }
) )  =  {
x  e.  D  |  A  e.  ( _V  \  { Y } ) }
2217, 19, 213sstr4g 3040 . 2  |-  ( ph  ->  ( `' ( x  e.  D  |->  ( F `
 A ) )
" ( _V  \  { Z } ) ) 
C_  ( `' ( x  e.  D  |->  A ) " ( _V 
\  { Y }
) ) )
23 suppssfv.a . 2  |-  ( ph  ->  ( `' ( x  e.  D  |->  A )
" ( _V  \  { Y } ) ) 
C_  L )
2422, 23sstrd 3009 1  |-  ( ph  ->  ( `' ( x  e.  D  |->  ( F `
 A ) )
" ( _V  \  { Z } ) ) 
C_  L )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433    =/= wne 2245   {crab 2352   _Vcvv 2601    \ cdif 2970    C_ wss 2973   {csn 3398    |-> cmpt 3839   `'ccnv 4362   "cima 4366   ` cfv 4922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-xp 4369  df-rel 4370  df-cnv 4371  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fv 4930
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator