| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > swoord1 | Unicode version | ||
| Description: The incomparability equivalence relation is compatible with the original order. (Contributed by Mario Carneiro, 31-Dec-2014.) |
| Ref | Expression |
|---|---|
| swoer.1 |
|
| swoer.2 |
|
| swoer.3 |
|
| swoord.4 |
|
| swoord.5 |
|
| swoord.6 |
|
| Ref | Expression |
|---|---|
| swoord1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. . . 4
| |
| 2 | swoord.6 |
. . . . 5
| |
| 3 | swoer.1 |
. . . . . . 7
| |
| 4 | difss 3098 |
. . . . . . 7
| |
| 5 | 3, 4 | eqsstri 3029 |
. . . . . 6
|
| 6 | 5 | ssbri 3827 |
. . . . 5
|
| 7 | df-br 3786 |
. . . . . 6
| |
| 8 | opelxp1 4395 |
. . . . . 6
| |
| 9 | 7, 8 | sylbi 119 |
. . . . 5
|
| 10 | 2, 6, 9 | 3syl 17 |
. . . 4
|
| 11 | swoord.5 |
. . . 4
| |
| 12 | swoord.4 |
. . . 4
| |
| 13 | swoer.3 |
. . . . 5
| |
| 14 | 13 | swopolem 4060 |
. . . 4
|
| 15 | 1, 10, 11, 12, 14 | syl13anc 1171 |
. . 3
|
| 16 | 3 | brdifun 6156 |
. . . . . . 7
|
| 17 | 10, 12, 16 | syl2anc 403 |
. . . . . 6
|
| 18 | 2, 17 | mpbid 145 |
. . . . 5
|
| 19 | orc 665 |
. . . . 5
| |
| 20 | 18, 19 | nsyl 590 |
. . . 4
|
| 21 | biorf 695 |
. . . 4
| |
| 22 | 20, 21 | syl 14 |
. . 3
|
| 23 | 15, 22 | sylibrd 167 |
. 2
|
| 24 | 13 | swopolem 4060 |
. . . 4
|
| 25 | 1, 12, 11, 10, 24 | syl13anc 1171 |
. . 3
|
| 26 | olc 664 |
. . . . 5
| |
| 27 | 18, 26 | nsyl 590 |
. . . 4
|
| 28 | biorf 695 |
. . . 4
| |
| 29 | 27, 28 | syl 14 |
. . 3
|
| 30 | 25, 29 | sylibrd 167 |
. 2
|
| 31 | 23, 30 | impbid 127 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-xp 4369 df-cnv 4371 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |